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Abstract. The present paper deals with the dynamics problem of a vehicle having a single wheel – the monowheel. 
Because of the particular kind of contact link between the vehicle and road, the dynamics of such a vehicle is not very 
simple. The authors present the way to find the motion equations, which are commented, in order to offer a better 
understanding of such a vehicle motion. 
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1. Introduction  

The monowheel history begins in the second 
half of the 19th century, when there were 
manufactured some vehicles, driven by pedals. The 
first motor-driven monowheel was the “petrol 
monocycle” of Caravaglia presented in 1904 at 
Milan Exposition (figure 1). The principle is easy 
to understand from the figure. The big wheel with 
rim and tyre contains a frame which may rotate 
relatively to the rim, being fitted with ball-bearings 
at its corners. 

 

 
Figure 1. Caravaglia’s monowheel 

 
 
 

The frame supports both the driver, and the 
petrol engine: the rim is toothed on the side, and 
engages with the pinion of the engine. In sum, the 
mobile wheel rolls around the built fixed engine, 
and of course, around the driver! 

Another example is the modern monowheel 
built by Dr.Geraint Owen of Bath University, U.K. 
(figure 2).This monowheel consists of a 7ft metal 
hoop, with a 50 cc moped engine, driver’s seat and 
controls mounted in an inner frame [1]. 

 

 
Figure 2. Owen’s monowheel 

 
We might note the existence even of a 

monowheel driven by a Buick V8 engine: this is a 
vehicle built by Kerry Maclean in the 2000’s. 
 
2. Vehicle motion 
2.1. Simplified model 

From the figures 2 and 3, we can see that the 
vehicle is a multi-body system composed by: 

- the inner body 1, composed, at its turn, by 
a frame ABDC, holding three small wheels 4, the 
driving wheel 3, and of course the engine and, 
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Figure 4. External forces and couples 

finally, the driver; 
- the outer wheel 2, composed by a rim with 

its tyre [2]. 
 

 
 
 
 
 
 
 
 
 
 
 
 

2.2. Reference frames 
For the simplest motion, meaning the 

straight forward motion, we only need the 
following three reference systems (Fig.3): 

- a fixed reference frame 000 yxO ; 
- a transported reference frame Oxy, 

contained in the symmetry plane of the outer wheel 
2, but having the Ox-axis always horizontal;  

- a mobile reference frame 11yOx , bound to 

the inner body 1, and having the 1Ox -axis passing 
by the point D. 

 
2.3. External forces and couples 

To begin with, we shall make some 
simplifying assumptions. First, we shall consider 
the speed small enough in order to be able to 
neglect the air resistance. The second assumption 
is that the centre of gravity G of the system has an  

 

unchanged position relatively to the frame 11yOx , 
meaning that its coordinates α and OG=ρ  are 
constant.  
But, that does not mean a constant position of this 
point in the transported frame Oxy, because there is 
a relative rotation of the inner body by the angle 

1θ  (Fig.4).  
We shall consider the following notations: 
- 11,JM , the mass of the inner body 1, and 

its moment of inertia about an axis normal to the 
plane xOy  and passing by the point 1G , 

-  ,, 22 JM the mass of the outer wheel 2, 
and its moment of inertia about an axis normal to 
the plane xOy and passing by the point O,  

- 3J , the moment of inertia of the driving 
wheel about its axis of rotation, 

-  eJ , the moment of inertia of the engine. 
Finally, we shall consider only the following 

external forces: 
- the weights gMgMMg 21 ,, , having 

evident significations, 
- the contact reactions ,, yx FF meaning 

tangential force and normal force in the 
contact point K,  

and couples: 
- the rolling resistance couple rrC , acting in 

the same contact point K, 
- the driving couple eC , applied by the 

engine (Fig.5), 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2.4. Kinematic relationships 

In order to write the expressions of kinetic 
energy of the system, and of the mechanical work 
developed by the acting external forces, we need to 

 
Figure 3. Simplified 2D-model 

 

 
 

Figure 5. Driving gear 
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establish the kinematic relationships. So, we can 
write, on the base of figures above: 

2θ=ξ R , (1) 
( )1cos θ+αρ+ξ=Gx , (2) 

( ).sin 1θ+αρ−= RyG  (3) 
Further, assuming that the movement 

transmission between the driving wheel 3 and the 
outer wheel 2 is without slipping, (being realised 
by a gear with toothed wheels, or by friction 
wheels without relative slipping), we can write 

,32 θ=θ rRi  (4) 

33, θ=θ ee i . (5) 

where 3,ei  represents the gear ratio between engine 

and driving wheel 3. 
These five relations contain seven 

unknowns: .,,,,,, 321 eGG yx θθθθξ That means, 
as we already pointed out, that the system has two 
degrees of freedom. Taking, for example, as 
independent variables1θ and 2θ , the other five 
coordinates will result easily from the equations 
presented above. 

In the particular case of the steady-state 
rectilinear motion, the position angle 1θ remains 

constant in value. Consequently, the Gy - 
coordinate will be also constant, and so we shall 
have only four equations between five coordinates 

eGx θθθξ ,,,, 32 . In that case, the system will have 
only one degree-of-freedom (as in the case of an 
ordinary motorcycle). Such a system is a so-called 
desmodromic system. 

 
2.5. Kinetic energy 

The kinetic energy of the entire vehicle is 
the sum between the kinetic energies of its 
constituents: 
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In the equation (7), we shall introduce the 
corresponding derivatives as follows 

( ),sin 11 θ+αρθ−ξ= &&&Gx  (12) 

( ).cos 11 θ+αρθ−= &&Gy  (13) 

Finally, the kinetic energy has the 
expression 
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From the above expression, it is now evident 
that the independent coordinates are .21 θθ and   

 
2.6. Mechanical work 

The mechanical work done by external 
forces will be: 

( )[ ]12 sin1 θ+α−ρ−θ−θ= MgCCW rree . (15) 
where, in accordance with (1) to (5), we shall put: 

23, θ=θ
r

R
i i
ee . (16) 

Then, in terms of independent coordinates, 
the mechanical work will be  
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Here, we have to note that the external 
forces yx FandF will not develop mechanical 

work, because they are always acting in a point at 
instantaneous rest (the contact point K) [3]. 
Evidently, this fact stands on the assumption that 
there is no sliding of the wheel on the road. 
 
3. Differential equations of motion 
3.1. Lagrange’s equations 

The Lagrange equations have the form [4] 
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Here, the generalized coordinates are 

2211 , θ=θ= qq . (19) 
Taking the corresponding derivatives, 

required by equations (18), we get the following 
two differential equations: 
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4. Conclusions 

1. Evidently, these two differential equations 
can be integrated only in a numerical way. 
However, even without integration, a simple 
qualitative analysis can give some useful 
information about the motion. 

First, we can easily see that in the simplest 
case of motion, namely in the steady-state plane 
motion, these equations give 
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( ) .0cos 1 =θ+αρMg  (23) 
From the equation (22), we can find the 

minimum torque of the engine, necessary to ensure 
the uniform motion at small speeds: 
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Further, from the equation (23) we find that, 
in steady-state conditions at low speed, the centre 
of mass of the inner body 1 must be placed on the 
vertical line passing by the centre O of the outer 
wheel 2. Indeed, ( ) 0cos 1 =θ+α  leads to this 
conclusion. 

2. When one is studying an actual situation, 
the formulation of the problem is more 
complicated, of course. We must take into account 
the air resistance, which is a function of the speed 
having the form 

,2vSkFair =  (25) 

where k is an aerodynamic coefficient, S is the 
frontal area of the assembly vehicle-rider, and v is 
the speed.  

3. Moreover, the study has to be extended to 
the accelerating or braking conditions. These 
conditions are more difficult for the driver, because 

if under accelerating conditions his rotation to the 
back is more or less unpleasant, under extremely 
braking conditions, the outer wheel may drive the 
inner body together with the driver, in a complete 
overturn. All these extreme conditions must be 
avoided by design and manageable by the driver. 

4. Last but not least, the problem of lateral 
stability (ensured by gyroscopic effect), gives 
another field to future studies. 
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