
 

 RECENT, Vol. 11, no. 1(28), March, 2010 41 

 

NONLINEAR PATH CONTROL  
FOR A DIFFERENTIAL DRIVE MOBILE ROBOT 

 
Plamen PETROV, Lubomir DIMITROV 

Technical University of Sofia, Bulgaria 
 

Abstract. A nonlinear feedback path controller for a differential drive mobile robot is presented in this paper. First, a 
kinematic model in error coordinates expressed in a moving reference frame partially linked to the robot is developed. 
The control law is designed using backstepping method yielding exponential stability of the closed-loop system. 
Stability analysis is performed via Lyapunov stability theory. Simulation results are presented to illustrate the 
effectiveness of the proposed controller. 
 
Keywords: differential drive mobile robot, path following, nonlinear control, integrator backstepping 
 
 
1. Introduction 

During the last two decades, the wheeled 
mobile robots have been increasingly presented in 
industrial and service robotics. In order to perform 
a task with a mobile robot, one needs to solve 
many problems from task planning to motion 
control design. At control level, important results 
have been established concerning specific control 
tasks as point stabilization (the parking problem), 
trajectory tracking and path following. Beyond the 
relevance in applications, stabilizing a mobile 
robot at given posture leads to specific control 
problems. It is known [1] that feedback point 
stabilization of nonholonomic systems like 
wheeled mobile robots can not be achieved via 
smooth time-invariant control law due to 
limitations imposed by Brockett’s necessary 
condition [2] for feedback stabilization of such a 
system. Furthermore, the linearization of a 
nonholonomic system about any equilibrium point 
is uncontrollable and consequently, linear analysis 
and design techniques cannot be applied [3]. The 
alternative approaches can be classified as smooth 
nonlinear time-varying feedback stabilization [4] 
and discontinuous nonlinear time-invariant 
stabilization [5]. For trajectory tracking and path 
following tasks, standard linear [6] and nonlinear   
approaches are effective (feedback linearization 
[7], Lyapunov-based techniques [8, 9, 10]).  

The most common way to build a mobile 
robot is to use two-wheel drive with differential 
steering and a free balancing wheel (castor). 
Controlling the two motors independently, such 
robots have good maneuvering and work well 
indoors on flat surfaces. Many commercial 
platforms based on this locomotion scheme exist, 
such as the mobile robot Pioneer 3-DX [11] from 
ROBOSOFT.  

In this paper, we present a nonlinear feedback 
path following controller for a differential drive 
mobile robot and in particular, with application to 
mobile robot Pioneer 3-DX [11]. The design 
procedure is based on integrator backstepping 
method. Stability analysis is performed via 
Lyapunov techniques. The paper is organized as 
follows: In Section 2, the kinematic model of the 
robot is presented. In Section 3, the path following 
problem in error coordinates expressed in a 
moving reference frame partially linked to the 
vehicle is stated. In Section 4, the design of the 
proposed controller and stability analysis is given. 
Simulation results are presented in Section 5. 
Section 6 contains some conclusions and future 
work. 

 
2. Kinematic model 

The mobile robot Pioneer 3-DX considered in 
this paper is shown in Figure 1. It is an advanced 
research robot that can has an on-board PC, a range 
of sensors like a camera and laser rage finder, and 
communicates via WiFi (Wireless Ethernet). 

 

 
Figure 1. The mobile robot Pioneer 3-DX 
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The kinematic scheme of the robot consists of 
platform with two driving wheels mounted on the 
same axis with independent actuators and one free 
wheel (castor). The mobile robot is steered by 
changing the relative angular velocities of the 
driving wheels. It is assumed that the wheels are 
non-deformable and roll without lateral sliding.  

A plan view of the robot moving on a 
horizontal plane is shown in Figure 2.  

 
Figure 2. A plan view of the robot 

 
Point P located at the center of the driving 

wheel axle is used as a reference point of the robot. 
If the inertia of the wheels with respect to their 
proper axes is ignored, the configuration of the 
system can be described by three generalized 
coordinates 
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where (xP, yP) are the coordinates of point P and θ 
is the orientation of the robot with respect to an 
inertial coordinate frame FXY (Figure 2). The 
system is characterized by the following 
nonholonomic constraint on the generalized 
velocities q&  

0=⋅ qA & , (2) 

where A is a 1×3 matrix as follows 
[ ]0cossin θθ−=A . (3) 

The mobile robot has two degrees of freedom 
in the plane. The constraint equation (2) can be 
converted in an affine driftless control system 

η⋅= Cq& , (4) 

where the columns of the 3×1 matrix C(q) 
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form a basis of the null space of matrix A(q). The 
control inputs η is a 2×1 vector of independent 
quasi-velocities of the form 
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where vPx is the velocity of point P and θ=ω &  is the 
angular velocity of the robot. The angular 
velocities of the driving wheels [ ]T

21, ϕϕ=ϕ &&&  are 
related to the quasi-velocities η trough the 
following expressions 

ϕ⋅=η &D , (7) 

where  
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is 2×2 invertible matrix; r is the wheel radius and d 
is the lateral semi-base of the robot. 

 
3. Problem formulation 

The path following geometry used in this 
paper is presented in Figure 2. Consider a 
differential-drive robot moving on a flat surface. It 
is assumed that the path C  is a smooth planar 
curve. A moving reference coordinate frame RxRyR 
is defined such that the xR axis is tangent to the 
path and oriented in the direction of motion to 
follow, and the yR axis passes through the reference 
point P of the robot. It is supposed that the distance 
between points P and R is smaller than the 
reference curvature radius at point R and in that 
way, ensuring that the reference path is uniquely 
defined [4].  

Using the frames Pxy and RxRyR, the position 
and orientation of the mobile robot with respect to 
the moving reference frame, i.e., the error 
coordinates e = [ex, ey, eθ]

T can be obtained by 
geometrical projection transformation as follows 
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where [xP, yP, θ]T and [xr, yr, θr]
T are the position 

and orientation of the frames Pxy and RxRyR with 
respect to an inertial frame FXY.  
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Differentiating (9) and taking into account the 
nonholonomic constraints, after some work [12], 
the error dynamics of the robot is obtained in the 
form 
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where  ω ≝ θ& and  ωr ≝ rθ& . It is assumed that the 
robot linear velocity vPx(t) is bounded 
( )(tvctev PxPxMax ≥= ) and does not converge to 
zero.  

Since the Ryr axis of frame RxRyR (Figure 2) 
passes through the reference point P of the robot, 
from the first equation of (10), it follows that 

0)( ≡≡ xx etе & . (11) 

Using (11), from the first equation of (10), the 
reference angular velocity ωr = vRx/ρr of the frame 
RxRyR can be expressed as a function of the 
velocity of the mobile robot as follows 
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, (12) 

where cr = 1/ρr  is the curvature of the reference 
path at point R.  

Finally, using (11), from the second and third 
equations of (10), an error dynamics which is 
appropriate for path following applications can be 
derived in the form 
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where  

re ω−ω=ω . (14) 

with ωr obtained from (12). 
In this case, using the parameterization  

(ex, ey, eθ) and given a path C, under the 
assumptions that 0)( >=≥ ctevtv PxPx  and |cr⋅ey| < 1, 
the path following problem consists of finding a 
feedback control ω = ω(vPx, ey, eθ, cr) for the system 
(13) such that  
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4. Nonlinear control design  
In this Section, a nonlinear controller based on 

a backstepping design method [13] is presented. 
The control objective is to regulate the lateral and 
orientation errors (ey, eθ) to zero. In our case, the 
design procedure is completed at the second step 
by finding a control law which makes the time 
derivative of the constructed Lyapunov function 
negative definite.  

Consider the system (13) and assume that  
|eθ| ∈ [0, π/2). Using the change of variables 
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with the input )()( uе ⇒ω  transformation 

θω= eeu cos , (17) 

in the new coordinates (z1, z2) and input (u), the 
system (13) is expressed as  
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Step 1. Using the quadratic function 
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and a virtual control γ for the first equation of (18) 
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the derivative of W1 becomes 
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Step 2. Consider an augmented quadratic 
function  
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negative definite. The resulting closed-loop system 
is 
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Finally, using the inverse transformations of 
(16), the actual control ω is obtained from (23), 
(17) and (14). 

The designed controller exponentially 
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stabilizes the system (16). Indeed, using (22) and 
(24), and choosing ( )21 2,2min kvk Px⋅=α  > 0, 
the following inequality holds 

022 ≤⋅α+ WW& . (26) 

Application of the Convergence Lemma [14], 
indicates the exponential convergence of W2 to 
zero, i.e.,  

teWtW α−⋅≤ )0()( 22  (27) 

and from (16), (19) and (20), this in turn implies 
that ey and eθ converge to zero exponentially.  

The performance of the closed-loop system 
depends of the choice of the controller gains k1 and 
k2. In order to determine appropriate values of the 
gains, a desired constant velocity Pxv  of the 
mobile robot during the motion along the desired 
path is set. In this case, the closed-loop system (25) 
can be written in the form of a second order 
differential equation with constant coefficients 

0
)()(

1
11

21

21
1

21
=+

+
+

+
+

zz
kkvv

kkv
z

kkvv PxPx

Px

PxPx
&&&  (28) 

Given a desired settling time ts defined as the 
time required for the step response to decrease and 
stay within a 5% of its final value, in the case of 
two identical real roots (damping ratio ζ = 1) of the 
characteristic equation, one has 

Tts 5≈ , (29) 

where  
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is the time-constant of (28). 
Using (28) and (29), the gains k1 and k2 can be 

expressed as functions of Pxv and ts as follows 
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5. Simulation results 

Simulation results were performed to illustrate 
the effectiveness of the proposed controller. The 
control law was implemented using MATLAB.  

A circular reference path with radius 2.5 m 
was chosen for the simulations. The velocity of the 
vehicle was vPx(t) = (1 + 0.5⋅sin(0.1t)), in m/s. The 
wheel base was 0.5 m, as that of mobile robot 
Pioneer 3-DX. According to (30), the gains were 

chosen to be k1 = k2 = 2.25, ( Pxv = 1 m/s, ts = 4s).  

The simulation results of the planar path and 
time plots of the error coordinates (ey, eθ) with 
initial conditions ey(0) = 1 m and eθ(0) = 0 rad are 
depicted in Figure 3 and Figure 4, respectively.  

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

x[m]

y[
m

]

Actual path

Reference path

 
Figure. 3. Following a circular path 
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Figure. 4. Evolution in time of the error  

coordinates (ey, eθ) 
 

6. Conclusion and future work 
In this paper, a kinematic nonlinear feedback 

path controller for a differential-drive mobile robot 
has been presented. The control design procedure 
is based on backstepping techniques and involves 
error coordinates in a moving reference frame 
partially linked to the robot.  

An exponential convergence to zero for the 
error coordinates is established.  
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The simulation results have shown the 
effectiveness of the proposed control law.  

Future work will address the problems 
associated with the dynamic extension of the 
proposed controller in the presence of uncertainty 
due to unmodeled dynamics of the robot.  
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