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Abstract. This paper presents a simple methodology for obtaining the entire set of continuous controllers that cause a 
nonlinear dynamical system to exactly track a given trajectory. The trajectory is provided as a set of algebraic 
differential equations that may or may not be explicitly dependent on time. The method provided is inspired by results 
from analytical dynamics and the close connection between nonlinear control and analytical dynamics is explored. The 
results provided in this paper here yield new and explicit methods for the control of highly nonlinear systems. The paper 
is based on previous work of the authors. 
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1. Introduction 

The main specifically properties in the motion 
control of the robots systems are the complexity of 
the dynamics and uncertainties, both parametric and 
dynamic. Parametric uncertainties arise from 
imprecise knowledge of kinematics parameters and 
inertia parameters, while dynamic uncertainties 
arise from joint and link flexibility, actuator 
dynamics, friction, sensor noise and unknown 
environment dynamics. 

Robot’s motion trajectories are typically 
specified in the task space in the terms of the time 
history of the end-effector’s position, velocities and 
acceleration. Operational space (also known as task 
space) is the space in which high-level motion and 
force commands are issued and executed. The 
operational-space formulation is therefore 
particularly useful in the context of motion and 
force control systems. On the other hand, in the 
joint space control methods, is assumed that the 
reference trajectory is available in terms of the time 
history of joints positions and orientations of robot 
arm. 

The natural strategy to achieve task space 
control goes through two successive stages: 
� in the first stage, the robot’s kinematics in the task 

space variables is passed into the kinematics 
corresponding joint space variables, and then; 

� in the second stage is designed the control in the 
joint space.  
Because of the complexity of both the 

kinematics and dynamics of the manipulator and of 
the task to be carried out, the motion control 
problem is generally decomposed into three stages: 
� motion planning, 
� trajectory generation,  
� trajectory tracking. 

The main problem of motion robot control is to 
generate the motion in the task space with a given 

command at joints level. Motion control of robot 
arm accomplishes the following functions: 
� to find of the corresponding movements in joints; 
� to generate of control signals for the actuators to 

produce the input torques; 
� to synthesize of programmed paths. 

For trajectory tracking, the computed reference 
trajectory is then presented to the controller, whose 
function is to cause the robot to track the given 
trajectory as closely as possible. For design of the 
tracking controller, we assume that the reference 
trajectory and path have been pre-computed. 

Control of robot manipulators is naturally 
achieved in the joint space, since the control input 
are joint torques. Nevertheless, the user specifies a 
motion in the task space, and thus it is important to 
extend the control problem to the task space. This 
can be achieved by different strategies. The more 
natural strategy consists of inverting the kinematics 
of the manipulator to compute the joint motion 
corresponding to the given end-effectors motion. 

Thus, the methods used to date primarily rely 
on linearization and/or PID-type control, and they 
posit assumptions on the structure of the control 
effort. 

 
2. Control of nonlinear dynamical systems 

Most physical robotic systems are inherently 
nonlinear. Thus, control of nonlinear systems is a 
subject of active research and increasing interest. 
However, most controller design techniques for 
nonlinear systems are not systematic and/or apply 
only to very specific cases. The most general results 
available for nonlinear processes relate to scenarios 
in which: 
� all uncertainty is parametric with a known 

functional dependence of the state-space model 
with respect to the unknown parameter, and 

� there is no measurement noise nor disturbances.  
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Under these admittedly restrictive assumptions 
the results available are quite general. For each 
possible value of the parameter, one needs to know 
how to design a (non-adaptive) controller that 
would stabilize the process if the parameter value 
was known. Such controller should be able to 
guarantee input-to-state stability with respect to an 
appropriately introduced disturbance. For each 
value of the parameter, one needs to know how to 
design a (non-adaptive) output estimator for the 
process that would converge to the process output if 
the parameter value was known. This is a trivial 
matter when the whole state of the process can be 
measured, but can still be challenging for nonlinear 
systems for which the state cannot be measured.  

The main challenge that remains open in the 
supervisory control of nonlinear systems is 
robustness with respect to disturbances. Although, 
the algorithms appear to work well in the presence 
of disturbances, few stability results are available. 

There are few systematic procedures to design 
controllers/estimators for nonlinear systems that are 
robust with respect to disturbances. In addition, 
there are also few results to analyze the closed-loop 
switched nonlinear systems that arise as one 
switches among different controllers.  

Current systematic approach to design 
controllers for nonlinear systems is feedback 
linearization. The basic idea of this technique is to 
design a control law that cancels the nonlinearities 
of the plant and yields a closed-loop system with 
linear dynamics. However, the technique is not 
robust to disturbances and uncertainties in the robot 
parameters, can yield to uncontrolled dynamics 
called zero dynamics and can only be applied to 
systems verifying certain vector field relations 

The development of controllers for nonlinear 
complex systems has been an area of intense 
research. Many controllers that have been 
developed for trajectory tracking of complex 
nonlinear and multi-body systems rely on some 
approximations and/or linearization [2]. Most 
control designs restrict controllers for nonlinear 
systems to be affine in the control inputs [3]. Often, 
the system equations are linearized about the 
system’s nominal trajectory and then the linearized 
equations are used along with various results from 
the well-developed theories of linear control. 

While this often works well in many situations, 
there are some situations in which better controllers 
may be needed. This is especially so when highly 
accurate trajectory tracking is required to be done in 
real time on systems that are highly nonlinear such 

the robotic systems.  
In the robotics literature [4, 6, 7], trajectory 

tracking using inverse dynamics and model 
reference control has been used for some time now, 
and the methods developed therein can be seen as 
particular subclasses of the formulation discussed in 
the present paper. Trajectory tracking in the 
adaptive control context (which is not the subject of 
this paper) has also been explored together with 
specific parameterizations to guarantee linearity in 
the unknown parameters of a system [5].  

 
3. Controllers that cause a robotic system to 

track a given trajectory  
This paper takes a generally different approach 

that is based on recent results from analytical 
dynamics. Here the complete nonlinear problem is 
addressed with no assumptions on the type of 
controller that is to be used, except that it will be 
continuous.  

One considers the robot dynamics model, given 
by the joint-space formulation, usually presented in 
the canonical forms:  

τqgqqCqqM =++ )(),(),( &&&t  (1) 
M is an n×n symmetric, positive-definite matrix and 
is called the generalized, or joint-space, inertia 
matrix, C is an n×n matrix such that C q&  is the 
vector of Coriolis and centrifugal terms - 
collectively known as velocity product terms- and g 
is the vector of gravity terms. More terms can be 
added to this equation, as required, to account for 
other dynamical effects (e.g., viscous friction). 

The symbols q, q& , q&& , and τ denote n-
dimensional vectors of joint position, velocity, 
acceleration and effort variables respectively, where 
n is the number of degrees of motion freedom 
(DoF) of the robot mechanism.  

This equation shows the functional 
dependencies explicitly: M is a function of q, C is a 
function of q andq& , and so on. Once these 
dependencies are understood, they are usually omitted. 

Consider an unconstrained nonlinear 
mechanical robot system described by the second 
order differential equation of motion:  

 

),,(),( tt qqQqqM &&& =  

0)0( qq =         0)0( qq && =  
(2) 

 

where, q(t) is the n-vector (n by 1 vector) of 
generalized coordinates of the robot with n DoF; the 
dots indicate differentiation with respect to time; 
and the matrix M(q, t) is a positive definite n by n 
matrix. 
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Equations (1) and (2) can be obtained using 
Lagrangean model. The n-vector Q on the right 
hand side of equation (2) is a ‘known’ vector in the 
sense that it is a known function of its arguments. 
By ‘unconstrained’ one means that the components 
of the initial velocity 0q&  of the robot system can be 
independently assigned. 

By ‘unconstrained’ one mean here that the n 
coordinates, q are independent of one another, or 
are to be treated as being independent of each other. 

Suppose further that the unconstrained system 
is now subjected to the m constraints. 

One requires that this mechanical system be 
controlled so that it tracks a trajectory that is 
described by the following consistent set of m 
equations: 

0),( =ti qΦ         hi L1=  (3) 
and 

0),,( =ti qqΨ &         mhi L,1+=  (4) 
One assumes that the mechanical robot 

system’s initial conditions are such as to satisfy 
these relations at the initial time. The latter set of 
equations, which are non-integrable, is non-
holonomic. 

In order to control the system so that it exactly 
tracks the required trajectory i.e. satisfies equations 
(3) and (4) one must apply an appropriate control  
n-vector ),,( tc qqQ &  so that the equation of motion of 
the controlled system becomes 

),,(),,(),( ttt c qqQqqQqqM &&&& +=  

0)0( qq =        0)0( qq && =  
(5) 

where now, the components of the n-vectors q0 and 

0q&  satisfy equations (3) and (4) at the initial time,  
t = 0.  

Throughout this paper, one shall, for brevity, 
drop the arguments of the various quantities, unless 
needed for clarity. 

The controlled system is described by the 
relation (5), where Qc is the control matrix. 

One begins by expressing equation (5) in terms 
of the weighted accelerations of the system. To 
control a mechanical system described by equation 
(2), so it exactly satisfies the trajectory described by 
the requirements (3) and (4) by choosing the 
weighting matrix to be any positive - definite n by n 
matrix: ),(),( 1 tt qMqN −= . 

One denotes the acceleration of the 
uncontrolled system by: 

),,(),(),,( 1 ttt qqQqMqqa &&
−= . (6) 

In equation (4), one identifies the expression: 
),,(),(),,( 1 ttt cc qqQqMqqq &&&&

−=  (7) 

witch can be viewed as the deviation of the 
acceleration of the controlled system from that of 
the uncontrolled system. 

From equation (5), one obtains the expression: 

cqaq &&&& +=  (8) 
One now differentiates equation (3) twice with 

respect to time t, and equation (4) once with respect 
to time, giving the set of equations 

),,(),,( tt qqbqqqA &&&& =  (9) 
where A is an m by n matrix of rank k and b is an 
m-vector. With equations (6) and (8) equation (9) 
can be further expressed as [1]: 

),,(),,( tt c qqbqqqB &&&& =  (10) 
where B is an m by n matrix who is calculated by 
the expression: 

12/1 )],(),()[,,(),,( −= tttt c qMqNqqAqqqB &&&&  (11) 

One can now express the accelerations n-vector 
q&&  in terms of its orthogonal projections on the 
range space of BT and the null space of B, so that: 

qBBIqBBq &&&&&& )( ++ −+=  (12) 

In equation (12), the matrix B+ denotes the 
Moore–Penrose generalized inverse of the matrix B. 
It should be noted that equation (12) is a general 
identity that is always valid since it arises from the 
orthogonal partition of the identity matrix 

)( ssss BBIBBI ++ −+= . 
Using equation (10) in the first member on the 

right hand side of equation (12), and equation (8) to 
replace q&&  in the second member, one gets: 

))(( cqaBBIbBq &&&& +−+= ++  (13) 

which, owing to equation (7), yields: 

)( BabBqBB −= ++
c&&  (14) 

The general solution of the linear set of 
equations (14) is given by [1]: 

zBBBBIBabBBBq )]()([)()( ++++++ −+−=c&&  (15) 

After any combination one obtains the second 
equality: 

zBBIBabBq )()( ++ −+−=c&&  (16) 

where the n-vector ),,( tqqz &  is any arbitrary  
n-vector. To obtain the second equality above, one 

used the property that )()( BBBB +++ =  in the two 
members on the right hand side along, with the 

property so that +++ = BBBB . 
The set of all possible controls ),,( tc qqQ &  (or 

controllers) that causes the controlled system to 
exactly track the required trajectory is explicitly 
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given by 

zBBINBabBN

qNqqQ

)()(

),,(

2/12/1

2/1

++

−

−+−=

== cc t &&&

 (17) 

The mechanical robotic system, described by 
the nonlinear Lagrange equation (1), is explicitly 
controlled through the addition of a control,  
n-vector ),,( tc qqQ & , provided by equation (17), in 
witch the n-vector z may be chosen still ensures that 
the description of the trajectory given by equations 
(3) and (4) is exactly satisfied. 

For spatial tests to reduce the number of virtual 
pairs judicious comparisons, we assume the 
environment is quite free and the end-effectors 
move in such a way that the geometric coherence 
can be preserved, i.e. the assumption that the 
motion is essentially continuous in time domain. 

 
5. Conclusions 

This paper presents the motion in terms of 
second-order differential equations. This 
methodology has been inspired by results in 
analytical dynamics. 

The explicit closed-form expression (17) 
provides the entire set of continuous tracking 
controllers that can exactly track a given trajectory 
description, assuming that the system’s initial 
conditions satisfy the description of the trajectory. 
The explicit closed-form expressions for the 
controllers can be computed in real time. 

Closed-form expressions for all the continuous 
controllers required for trajectory tracking for 
nonlinear systems do not make approximations. 
Furthermore, no approximations or linearization are 
made here with respect to the trajectory that is being 
tracked, which may be described in terms of 
nonlinear algebraic equations or nonlinear 
differential equations. Moreover, the approach 
arrives not just at one nonlinear controller for 
controlling a given nonlinear system, but also at the 
entire set of continuous controllers that would cause 
a given set of trajectory descriptions to be exactly 
satisfied. 
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