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1. Introduction 
Ground vehicles have become an almost 

essential part of modern life where they are 
depended upon daily to provide services such as 
transportation for people and/or cargo. For this 
reason, much research has been devoted to the 
overall advancement of ground vehicle technology. 
Modern science has allowed for the production of 
ground vehicles that can operate autonomously or 
semi-autonomously saving both t ime and money. 
Even the military has come to rely on intelligent 
unmanned vehicles for performing routine and/or 
potentially dangerous tasks. Safety is undoubtedly 
a major source of motivation behind the increasing 
performance demands of manned ground vehicles. 
Steer / brake / thrott le-by-wire technology has 
allowed for passenger vehicle safety systems such 
as driver assisted automated lane keeping [1] and 
stability control systems [2] to become realizable. 

2. Vehicle Modeling 
The vehicle schematic shown in figure 1 is a 

simple diagram of a four wheel vehicle in the 
lateral and longitudinal planes. In order to simplify 
the lateral dynamics, the longitudinal dynamics, 
including drive force and rolling resistance, were 
neglected. Addit ionally, the front and rear track 
widths (t) are assumed to be equal. As seen in 
Figure 1, the sideslip (β) of the vehicle is the 
difference between the velocity heading (v) and the 
true heading of the vehicle (ψ). The yaw rate (r) is 
the angular velocity of the vehicle about the center 
of gravity. The lateral forces (Fy) are shown for 
both the inner and outer t ires as well as the front 
and rear t ires of the vehicle. 

In the figure 1, the lateral dynamics of the 
vehicle are derived by summing the forces and the 
moments about the center of gravity of the vehicle 
as shown in relations (1). 
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Figure 1. Wheel Vehicle Schematic Showing the Full Lateral Dynamics of a Vehicle 
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By solving the above equat ions for β and r, the 
equat ions of mot ion for the vehicles lateral 
dynamics can be found and are shown in equat ion (2).  

The t ire slip angle (α), as seen in figure 1, is 
the difference between the t ire’s longitudinal axis 
and the t ire’s velocity vector. T he t ire velocity 
vector can be found by knowing the vehicle’s 
velocity (at  the center of gravity) and yaw rate. The 
direct ion or heading of the rear t ire is the same as 
the vehicle heading, while the heading of the front 
t ires must include the steer angle. T he equat ion of 
the t ire slip angles for all four t ires is given in 
equat ion (3). 

vehicle are formed by separat ing the sprung mass 
and the unsprung mass at the roll center as shown 
in figure 2.  

The equat ion of mot ion for the roll dynamics 
are formed by treat ing the system as a simple 
spring-mass-damper system. The equat ion of mot ion 
is derived by summing moments about the roll center 
of the vehicle for the sprung mass is given in equat ion 
(4). The moments can be summed around the roll 
center if a lateral centripetal force is added to the 
center of gravity [3]. 

Equat ion (4) can be rearranged which leads to 
the equat ion for the non-linear roll dynamics of the 
vehicle as seen in equat ion (5). 

In the above equat ion (k) is the spring 
st iffness, (b) is the damping st iffness, (h1) is the 
difference between the center of gravity height and 
the roll center height, and (Ix) is the mass moment 
of inert ia about the longitudinal axis. The 
expression for the change in vert ical forces, or 
weight t ransfer, at  the t ires can be found by 
summing the moments about the roll center for the 
un-sprung mass for both the front and rear of the 
vehicle. The weight t ransfer, in steady state, can be 
found by assuming the roll is equal to zero. 

The total vert ical force at each wheel of the 
vehicle can be calculated by simply adding the 
weight t ransfer to the stat ic weight of each t ire. The 
equat ions for the total weight of all four t ires is 
shown in equat ion (6). 

The vert ical forces and the t ire slip angles can 
be used in order to find the total lateral force at 
each t ire given the t ire model. One popular t ire 
model for determining the lateral t ire force as a 
funct ion of slip angle is the Pacejka “magic” t ire 
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Figure 2. Free body diagram of the roll dynamics  
for the sprung and un-sprung mass 

The roll angle (φ) of the vehicle is the amount 
of rotat ion of the vehicles sprung mass about its 
roll axis. In reality, the roll center of the vehicle 
does not remain constant, however in this case a 
stat ionary roll center is assumed in order to 
simplify the model. The roll dynamics of the 
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model [4]. In this method, t ire parameters, that are 
usually unknown, are used to calculate the lateral 
forces of the t ire. For small slip angles the force 
profile can be defined by a linear region and also 
the peak force does not increase proport ionally to 
the vert ical force (Fz). In the linear area of the t ire 
curve, the slope of the line is known as the t ire 
cornering st iffness (Cα). In the linear region of the 
t ire curve the forces can be calculated as seen in 
equation (7). 

 
3. Linearization of the vehicle model 

Some assumptions about the non-linear model 
of the vehicle can be made in order to linearize and 
simplify the model [5]. One approximation used is 
to neglect weight transfer. This assumption causes 
the vert ical forces at the t ires to be equal to the 
stat ic weights, which are the same on the left  and 
right side of the vehicle. The next assumption made 
is that the t ire slip angles (α) are the same on the 
inner and outer sides of the vehicle. This 
assumption is valid if V >> tr / 2 as seen in 
equation (3). Also, the inner and outer t ires are 
assumed to be the same. Assuming the same inner 
and outer t ires results in the t ire cornering st iffness 
(Cα) being the same for the inner and outer t ires of 
the vehicle. Assuming no weight transfer, the same 
t ire cornering st iffness (for the inner and outer 
t ires), and the same t ire slip angles (for the inner 
and outer t ires) results in the lateral forces being 
equal for both the inner and the outer t ire. 
Addit ionally, the vehicle’s forward velocity is 
assumed to be constant in order to remove the 
accelerat ion term from the equations of motion. 
Finally, the small angle approximation is used in 
order to remove the trigametric terms from the 
equations of motion. These assumptions simplify 
the vehicle model to what is commonly known as 
the bicycle model. It  is known as the bicycle model 
because the inner and outer dynamics are 
approximated as equal and therefore collapsed into 
two wheels. 

The equations of motion for the lateral 
dynamics of the simplified model are found the 
same way as the non-linear model (i.e. by summing 
the forces and moments around the center of 
gravity). This leads to the equation of motion for 
the bicycle model shown below in Equation (8). 

 
 

The above linear equations of motion can be 
rewritten in the state space form show in equation (9) 

where x = state; y = measurements; u = input;  
A = state matrix; B = input matrix; C = output matrix. 

The state space equations for the lateral 
dynamics can be seen in equation (10). 

The equations for steady state yaw rate and 
steady state sideslip are given in equation (11). 
Steady state yaw rate and sideslip are dominated by 
the weight split  and the t ire cornering st iffness. 

The understeer gradient (Kus) defines whether 
the vehicle is understeer (Kus < 0), oversteer (Kus > 0), 
or neutral steer (Kus = 0). The vehicle’s understeer 
characterist ics determine the change in steer angle 
required to hold a steady state turn as velocity 
increases [3].  

The non-linear roll model seen in Equation (5) 
can be linearized by assuming small angles to 
remove the trigametric terms. The linearized roll 
equations can then be placed into the state space 
representation as shown in equation (12). 
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Since lateral accelerat ion consists of pure 
lateral accelerat ion plus the centripetal 
accelerat ion, it can be written as a funct ion the 
derivate of sideslip and the yaw rate. By 
subst itut ing the lateral accelerat ion in terms of the 
derivat ive of sideslip and yaw rate, the yaw and roll 
state space models can be coupled together as 
given below in equat ion (13). 

 
4. Parallel optimization of the vehicle model 

The presented vehicle model is a start  point  for 
development  of a method for autonomous control. 
As you know each real-t ime system requires to be 
opt imized in respect  of calculat ion process. That  is 

way a funct ional decomposit ion is realized for 
suggested method for autonomous vehicle control. 
As result  two tasks are obtained: task 1 and task 2, 
which require sequent ional execut ion, because task 
2 has to wait  execut ion of task 1. Also for task 1 
data decomposit ion is realized. The decomposit ion 
can be seen in figure 3. 

The data decomposit ion of task 1 is presented 
with task graph shown in figure 3. The graph edges 
correspond to the data dependences, which define 
that  calculat ion of one value requires calculat ion of 

another value. T he graph nodes are marked with 
the result of each subtask execut ion. 
Amdahl’s law states that  potent ial program 
speedup is defined by the fract ion of code that  can 
be parallelized [6]. By means of the realized 
decomposit ion and after analysis of the source code 
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that  represent the autonomous vehicle cont rol we 
can conclude that  the parallel fract ion of code is 
60%. According to Amdahl’s law the speed up of 
the suggested method for an autonomous vehicle 
cont rol is shown in figure 4. 

The speed up reaches constant  value when the 
number of the processors is 64. Amdahl’s law 
provides a theoret ical upper limit  on parallel 
speedup assuming that  there are no costs for 
communicat ions. Nevertheless the achieved speed 
up is significant  envisaging that Amdahl’s law is 
fairly pessimist ic. 

4. Conclusions 
The method for autonomous vehicle cont rol 

has been proposed. Since this method has to be 
applied in real-t ime systems, it  has been opt imized 
in respect  of two direct ions: linearizat ion and 
parallel execut ion. The small angle approximat ion 
is use d in order to remove the t rigamet ric terms 
from the equat ions of mot ion. T he parallel 
opt imizat ion shows increasing of the speed up 
according to number of processors due to parallel 
execut ion. 
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