

291

COMPARISON BETWEEN OBJECT-RELATIONAL

AND OBJECT-ORIENTED DATABASES

Daniela GOTSEVA, Loie Naser Mahmud NIMRAWI
Technical University of Sofia, Bulgaria

Abstract. This paper discusses some concepts related to the object-relational and object-oriented database system such
as object identity, row types, user-defined types (UDTs), user-defined routines, polymorphism, subtypes and
supertypes, persistent stored modules, and large objects. At the end of the paper exists comparison between ORDBMS
and OODBMS.

Keywords: object-oriented database, object-relational database, database design, object query language

1. Introduction to object-relational database

system
Until recently, the choice of DBMS seemed to

be between the relational DBMS and the object-
oriented DBMS. However, vendors of RDBMS
products are still conscious of the threat and
promise of the OODBMS. They agree that their
systems are not currently suited to the advanced
applications, and that added functionality is
required.

The examining of the advanced database
applications that are emerging, due to find extensive
use of many object-oriented features such as a user-
extensible type system, encapsulation, inheritance,
polymorphism, dynamic binding of method,
complex objects including non-first normal form
objects, and object identity. The most obvious way
to remedy the shortcomings of the relational model
is to extend the model with these types of features.
This is the approach that has been taken by many
prototype extended relational systems, although
each has implemented different combinations of
features. Thus, there is no single extended relational
model; rather, there are a variety of these models.
However all the models do share the same basic
relational tables and query language, all incorporate
some concept of 'object', and some have the ability
to store methods (or procedures or triggers) as well
as data in the database.

Various terms have been used for systems that
have extended the relational data model. The
original term that was used to describe such systems
was the extended relational DBMS (ERDBMS).
However, in recent years the more descriptive term
Object-Relational DBMS has been used to indicate
that the system incorporates some notion of 'object',
and more recently the term Universal Server or
Universal DBMS (UDBMS) has been used. It
stands for Object-Relational DBMS (ORDBMS).

Three of the leading RDBMS vendors (Oracle,
Informix, and IBM) have all extended their systems
to become ORDBMSs, although the functionality
provided by each is slightly different. The concept
of the ORDBMS, as a hybrid of the RDBMS and
OODBMS, is very appealing, preserving the wealth
of knowledge and experience that has been acquired
with the RDBMS. Some analysts predict the
ORDBMS will have a 50% larger share of the
market than the RDBMS [1, 2].

The main advantages of extending the
relational data model come from reuse and sharing.
Reuse comes from the ability to extend the DBMS
server to perform standard functionality centrally,
rather than have it coded in each application. For
example, applications may require spatial data type
that represents points, lines, and polygons, with
associated functions that calculate the distance
between two points, the distance between a point
and a line, whether a point is contained within a
polygon, and whether two polygonal regions
overlap, among others. If it is possible to embed this
functionality in the server, it saves having to define
them in each application that needs them, and
consequently allows the functionality to be shared
by all applications. These advantages also give rise
to increased productivity both for the developer and
for the end-user.

2. OODB systems perspectives

Database systems are primaries concerned with
the creation and maintenance of large, long-lived
collections of data. Modern database systems are
characterized by their support of the following
features:
- A data model: A particular way of describing

data, relationships between data, and constraints
on the data.

RECENT, Vol. 13, no. 3(36), November, 2012

292

- Data persistence: the ability for data to outlive
the execution of a program, and possibly the
lifetime of the program itself.

- Data sharing: The ability for multiple
applications (or instances of the same one) to
access common data, possibly at the same time.

- Reliability: The assurance that the data in the
database is protected from hardware and software
failures.

- Scalability: The ability to operate on large
amount of data in simple ways.

- Security and integrity: The protection of the
data against unauthorized access, and the
assurance that the data conforms to specified
correctness and consistency rules.

- Distribution: The ability to physically distribute
a logically interrelated collection of shared data
over a computer network, preferably making the
distribution transparent to the user.

In contrast, traditional programming languages
provide constructs for procedural control and for
data and functional abstraction, but lack built-in
support for many of the above database features.
While each is useful in their respective domains,
there exist an increasing number of applications that
require functionality from both database system and
programming languages. Such applications are
characterized by their need to store and retrieve
large amounts of shared, structured data.

In the last two decades, there has been
considerable effort invested in developing systems
that integrate the concepts from these two domains.
However, the two domains have slightly different
perspectives that have to be considered and the
differences addressed [1].

Perhaps two of the most important concerns
from the programmers’ perspective are performance
and ease-of-use, both achieved by having a more
seamless integration between the programming
language and the DBMS than that provided with
traditional database systems. With a traditional
DBMS:
- It is the programmer's responsibility to decide

when to read and update objects (records)
- The programmer has to write code to translate

between the application's object model and the
data model of the DBMS (for example, relations)
which might be quite different. With an object-
oriented programming language, where an object
may be composed of many sub-objects
represented by pointers, the translation may be
particularly complex. In fact, it has been claimed
that a significant amount of programming effort

and code space is devoted to this type of
mapping, possibly as much as 30% as noted
above. If this mapping process can be eliminated
or at least reduced, the programmer would be
freed from this responsibility, the resulting code
would be easier to understand and maintain, and
performance may increase as a result.

It is the programmer's responsibility to perform
additional type-checking when an object is read
back from the database. For example, the
programmer may create an object in the strongly-
typed object-oriented language java and store it in a
traditional DBMS. However, another application
written in a different language may modify the
object, with no guarantee that the object will
conform to its original type.

These difficulties stem from the fact that
conventional DBMS have a two-level storage
model: the application storage model in main or
virtual memory, and the database storage model on
disk. In contrast, an OODBMS tries to give the
illusion of a single-level storage model, with a
similar representation in both memory and in the
database stored on disk.

Although the single-level memory model looks
intuitively simple, to achieve this illusion the
OODBMS has to cleverly manage the
representations of objects in memory and on disk
objects, and relationships between objects, are
identified by object identifiers (OIDs). There are
row types of OIDS: logical OIDs that are
independent of the physical location of the object on
disk, and physical OIDs that encode the location. In
the former case, a level of indirection is required to
look up the physical address of the object on disk.
An OID different in size from a standard in-memory
pointer that need only be large enough to address all
virtual memory, in both cases. Thus, to achieve the
required performance, an OODBMS must be able to
convert OIDs to end from in memory pointers. This
conversion technique has become known as 'pointer
swizzling' or 'object faulting', and the approaches
used to implement it have become varied, ranging
from software-based residency checks to page
faulting schemes used by the underlying hardware
[1, 5].

3. SQL3

The object-oriented features proposed in the
next SQL standard, SQL3, covering:
- Type constructors for row types and reference

type.

RECENT, Vol. 13, no. 3(36), November, 2012

293

- User-defined types (distinct types and structured
types) that can participate in supertype/subtype
relationships.

- User-defined procedure, functions and operators.
- Type constructors for collection types (arrays,

sets, and lists).
Support for large objects Binary Large Objects

(BLOBs) and Character Large Objects (CLOBs).

3.1. Object identity
Each relation has an implicitly defined attribute

named OID that contains the tuple's unique
identifier, where each OID value is created and
maintained by postgres. The OID attributes can be
accessed but not updated by user queries. Among
other users, the OID can be used as a mechanism to
simulate attribute types that reference tuples in
other relation. The relation name can be used for the
type name because relations, types, and procedures
have separate name spaces [1].

3.2. Row types

A row type is a sequence of field name/date
type pair that provides a data type that can represent
the types of rows in tables, so that complete rows
can be stored in variables, passed as arguments to
routines and returned as return values from function
calls. A row type can also be used to allow a
column of a table to contain row values [1, 3].

3.3. User-defined types (UDTs)

It refers to user-defined types as Abstract Data
Types (ADTs), that may be used in the same way as
the built-in types (for example CHAR, INT,
FLOAT). UDTs are subdivided into two categories:
distinct types and structured types. The simplest
type of UDT in SQL3 is the distinct type, which
allows differentiation between the same underlying
base types. In its more general case, a UDT
definition consists of one or more attribute
definitions. It has also been proposed that a UDT
definition consist additionally of routine
declarations. If this proposal is not accepted, these
declarations from part of the schema. In what
follows, it can be assumed that UDT definition may
contain routine declarations. It stands to routines
and operators generically as routines. In addition,
within the UDT definition it can be also define the
equality and ordering relationships for the UDT.

3.4. User-defined routines

User-defined routines (UDRs) define methods
for each manipulating data and are an important

adjunct to UDTs. An ORDBMS should provide
significant flexibility in this area, such as allowing
UDRs to return complex values that can be further
manipulated (such as tables), and support for
overloading of function names to simplify
application development. In SQL3, UDRs may be
defined as a part of a UDT or separately as part of a
schema. An SQL-invoked routine may be a
procedure, function, or iterative routine. It may be
externally provided in a standard programming
language such as C/C++, or defined completely in
SQL using extensions that make the language
computationally complete. A SQL-invoked
procedure is invoked from a SQL CALL statement.
It may have zero or more parameters, each of which
may be an input parameter(IN), an output parameter
(OUT),or both an input and output parameter
(INOUT), and it has a body if it is defined fully
within SQL. A SQL-invoked function returns a
value; any specified parameter [1, 3, 4].

3.5. Relations and inheritance

A relation inherits all attributes from its parents
unless an attribute is overridden in the definition.
Multiple inheritances are supported, however, if the
same attribute can be inherited from more than one
parent and the types of the attributes are different,
the declaration is disallowed. Key specifications are
also inherited [1, 4].

3.6. Polymorphism

Different routines may have the same name,
that is routine names may be over-loaded, for
example to allow aUDT subtype to redefine a
method inherited from a supertype, subject to the
following constraints:
- No two functions in the same schema are allowed

to have the same signature, that is, the same
number of arguments, the same data types for
each argument, and the same return data type.

- No two procedures in the same schema are
allowed to have the same name and the same
number of parameters.

The current draft SQL3 proposal uses a
generalized object model, so that the types of all
arguments to a routine are taken into consideration
when determining which routine to invoke, in order
from left to right. Where there is not an exact match
between the data type of the argument and the data
type of the parameter specified, type precedence list
are used to determine the closest match. the exact
rules for routine determination for a given
invocation are relatively complex [1].

RECENT, Vol. 13, no. 3(36), November, 2012

294

3.7. Subtypes and supertypes
SQL3 allows UDTs to participate in a

subtype/supertype hierarchy. A type can have more
than one supertype (that is, multiple inheritance is
supported), and more than one subtype. A subtype
inherits all the attributes and behavior of its
supertypes and it can define additional attributes
and functions like any other UDT and it can
override inherited function [1].

3.8. Persistent stored modules

A number of new statement types have been
added in SQL3 to make the language
computationally complete, so that object behavior
(methods) can be stored and executed from within
the database as SQL statements. Statements can be
grouped together into a compound statement
(block), with is own local variables. Some of the
additional statements provided in SQL3 are:
- An assignment statement that allows the result of

an SQL value expression to be assigned to a local
variable, a column, or an attribute of a UDT.

- An IF…THEN…ELSE…END IF statement that
allows conditional processing.

- A CASE statement that allows the selection of an
execution path based on a set of alternatives.

- A set of statements that allows repeated
execution of a block of SQL statements. The
iterative statements are FOR, WHILE, and
REPEAT.

- A CALL statement that allows procedures to be
invoked and RETURN statement that allows an
SQL value expression to be used as the return
value from an SQL function [2].

3.9. Large Objects

A Large Object is a table field that holds a
large a mount of data as a long text file or a
graphics file. There are three different types of large
object data types defined in SQL3:
- Binary Large Object (BLOB), a binary string that

does not have a character set or collation
association.

- Character Large Object (CLOB) and National
Character Large Object (NCLOB), both character
strings.

The SQL large object is slightly different from
the original type of DLOB that appears in many
current database systems. In such systems, the
BLOB is non-interpreted byte stream, and the
DBMS does not have any knowledge concerning
the content of the BLOB or its internal structure.
This prevents the DBMS from performing queries

and operations on inherently rich and structured
data types, such as images, video, word processing
documents, or web pages. Generally, this requires
that the entire BLOB be transferred across the
network from the DBMS server to the client before
any processing can be performed. In contrast, the
SQL3 large object does allow some operations to be
carried out in the DBMS server.

The standard string operators, which operate on
characters strings and return character strings, also
operate on character large object string, such as:
- The concatenation operator, (string1|| string2),

which returns the character string formed by
joining the character string operands in the
specified order.

- The character substring function, SUBSTRING
(string FROM startops FOR length), which
returns a string extracted from a specified string
from a start position for a given length.

- The fold function, UPPER (string) and LOWER
(string), which convert all characters in a string to
upper/lower case.

- The length function, CHAR+LENGTH (string),
which return the length of the specified string.

- The position function, POSITION(string1 IN
string2), which returns the start position of
string1 within string2.

However, CLOB strings are not allowed to
participate in most comparison operations, although
they can participate in a LIKE predicate, and a
comparison or quantified comparison predicate that
uses the equal (=) or not equal(<>)operators.

4. Comparison of ORDBMS and OODBMS

It can be conclude the treatment of Object-
Relational DBMS and Object-Oriented DBMS with
a brief comparison of the two types of system. It
can be assumed that future ORDBMSs will be
compliant with SQL3 [1]. The results are shown in
Table 1.

5. Conclusion

The concept of the ORDBMS is as a hybrid of
the RDBMS and OODBMS. The object-oriented
features proposed in SQL3 support type
constructors for row types and reference types, user-
defined types, user-defined procedures, functions
and operators, and support for large objects Binary
Large Objects (BLOBs) and Character Large
Objects (CLOBs).

RECENT, Vol. 13, no. 3(36), November, 2012

295

Table 1. Comparison Between ORDBMS and OODBMS

Feature ORDBMS OODBMS

Encapsulation
Supported

through UDTs

Supported and
broken for

queries

Inheritance

Supported
(separate

hierarchies for
UDTs and

tables)

Supported

Polymorphism

Supported
(UDF

invocation
based on the

generic
function)

Supported as in
an object
oriented

programming
model

language.

Relationships

Strong support
with user-
defined

referential
integrity

constraints

Supported (for
example, using
class libraries)

Integrity
constraints

Strong support No support

Recovery Strong support

Supported but
degree of

support differs
between
products

Advanced
transaction models

No support

Supported but
degree of

support differs
between
products

Security, integrity,
and views

Strong support
Limited
support

References
1. Connolly, T., Begg, C. (2005) Database systems of

particular approach to Design, Implementation and
management. ISBN 0321210255, Addison Wesley

2. Embley, D. (2003) Object Database Development: concepts
and principles. Addison Wesley, ISBN 978-0201258295

3. Database Management Systems Revisited, An Updated
DACS State-of-the-Art Report. Prepared by: Gregory
McFarland, Andres Rudmik, and David Lange Modus
Operandi, Inc, 1999

4. Cattell, R.G.G. (1997) Object Data Management: Object-
Oriented and Extended Relational Database Systems.
Addison-Wesley, ISBN 978-0201547481

5. Date, C.J., Darwen, H. (1992) Into the Great Divide.
Addison-Wesley, ISBN 0-201-82459-0

Received in August 2012

