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ROBOT COLLISION AVOIDANCE  
USING PROGRAMMING THROUGH IMITATION 

 
Aurel FRATU 

Transilvania University of Brasov, Romania 
 
Abstract. This paper deals with the collision avoidance of the cooperative robots using the programming through 
imitation. Each physical robot acts fully independently, communicating with corresponding virtual prototype and 
imitating her behaviour. Each physical robot reproduces the motion of her virtual prototype. The estimation of the 
collision-free actions of the virtual cooperative robots and the transfer of the virtual joint trajectories to the physical 
robots who imitate there virtual prototypes, are the original ideas. We tested the present strategy on several simulation 
scenarios, involving two virtual robots and estimating collision-free actions, during of the cooperative tasks. 
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1. Introduction 

Cooperative robots are permanently in danger 
to be in collision. Therefore installations with 
cooperative robots in real world, require collision 
avoidance methods, which take into account the 
mutual constraints of the robots. Generating 
motions for real or virtual robots, which are coupled 
to a task, is usually a complicated problem. 

A key requirement for cooperative efficient 
operation is good coordination and reciprocal 
collision avoidance. 

The contact of the robot with an obstacle must 
be detected and it will cause the robot to stop 
quickly and thereafter back off to reduce forces 
between the robot and environment.  

The problem of the contact with obstacle 
imposes the null velocity in the moment of the 
impact and to obtain the zero-velocity points on the 
pathway. The collision detection simply determines 
if two geometric objects are intersecting or not. The 
intersecting of two objects is possible in the virtual 
world, where the virtual objects can be even 
intersected and there no exist the risk to be 
destroyed. The contact detection between the virtual 
objects is responsible for determining the distance 
between two points in a space and substitutes the 
distance metrics devices. This strategy may use 
simple CAD methods or may be extended to be 
more complex and take into account invalid areas of 
the space. 

Using this strategy one detects collisions in all 
directions, protecting not only the physical end-
effectors but also the work pieces and the physical 
robot itself. 

The ability of predicting of the behavior of 
cooperative robots is important in design; the 
designers want to know whether the robot will be 
able to perform a typical task in a given time frame 

into a space with constraints.  
The control engineer cannot risk a valuable 

piece of equipment by exposing it to untested 
control strategies. Therefore, a facile strategy for 
contact detection and collision avoidance, capable 
of predicting the behavior of robotic manipulators, 
becomes imperative. 

When the robots need to interact with their 
surrounding, it is important that the computer can 
simulate the interactions of the cooperative 
participants, with the passive or active changing 
environment in the graphics field, using virtual 
prototyping. 

In this paper, one propose a fast method that 
simultaneously determines actions for two virtual 
robots that each must cooperate with other.  

The actions for the cooperative tasks are 
computed for each virtual robot and are transferred, 
with a central coordination to corresponding 
physical robot which must imitate her virtual 
homonym.  

Thus, one proves that our method guarantees 
the collision-free motion for each of the cooperative 
robots. The planning package communicates 
primarily with simulation. A planning module can 
send messages to the simulation such as computed 
plans for the robots. The planning module can 
further send trajectory and planning structure 
information to visualization so users can see the 
results of an algorithm.  

The planning module also receives control 
signals from the simulation module, such as when 
to start planning joint trajectories.  

The visualization module is responsible for 
visualizing any aspect needed by the programmer. 
Users interact with the simulation environment 
through the visualization. This includes, but not 
limited to, computer screen and cameras video.  
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The visualization provides an interface to 
develop interactive implementations based on 
imitation strategy. Optimization of the real robots 
behaviour is performed in the low dimensional 
virtual space using the virtual robot prototypes. 

This paper is focused on the collision 
avoidance through transfer the motion mapping 
from virtual space, in 3-D dimensional real space.  

 
2. Overview of Learning by Imitation 

Imitation is an important learning mechanism 
in many intelligent systems including robots. It is 
easy to recuperate kinematic information from 
virtual robot motion, using for example motion 
capture. Imitating the motion with stable robot 
dynamics is a challenging research problem [7]. 

In this framework a physical robot arm can be a 
collection of rigid bodies, subject to the influence of 
various forces in the workspace, and restricted by 
various motion constraints. 

One propose a control strategy for two physical 
cooperative robots that uses capture data from their 
virtual prototypes and imitate them to track the 
motion in the real space avoiding the collision. One 
present an model, for which robust controller can be 
easily designed. A typical example is a linear 
quadratic regulator (LQR) [4], which one use for 
our examples.  

Joint trajectory tracking is enabled by 
commanding desired joint accelerations based on 
joint angle and velocity errors as well as supply 
forward joint accelerations. One applies the 
controller to tracking motion capture clips of two 
cooperative robots who accomplish a collaborative 
task. The resulting robot motion clearly preserves 
the original behavior of each virtual robot.  

In addition, the controller does not require 
intensive pre-processing of motion capture data, 
which makes it potentially applicable to real time 
applications. 

In this paper, one propose an approach to 
achieving pathway acquisition in robots 
programming, using imitation strategy.  

The framework for our method is shown in 
Figure 1. 

First, a motion capture system transforms 
Cartesian position of virtual robot structure to 
virtual joint angles based on kinematic model. 
Then, the joint angles are converted in binary words 
and transferred to real robot joint controllers via 
intelligent interface. After this one use the control 

loops structure to establish relationships between 
the virtual and real robot control systems.  

One employs dimensionality reduction to 
represent posture information in a virtual low-
dimensional space [3].  

 

 a) 

 b) 
Figure 1. A framework for robot learning by imitation 

Virtual cooperative robots (a) - Real cooperative robots (b) 
 

In particular, for reciprocal correspondence, 
sensory feedback data are recorded from the real 
robot during motion [2]. A causal relationship 
between actions in the low dimensional virtual 
space and the expected sensory feedback is learned. 
This learned sensory motor mapping allows virtual 
motion dynamics to be optimized.  

As well an inverse mapping from the real joint 
space, back to the original virtual joint space is then 
used to generate optimized motion.  

One present result demonstrating that the 
proposed approach allows a real robot to learn move 
based exclusively on virtual robot motion capture 
without the need for a detailed physical model of 
the robot. 

The paper is focused on tracking joint angle 
trajectories, although some cooperative tasks may 
require tracking other quantities such as end-
effectors trajectories which will be addressed in 
future work. 
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3. Processing of the Motion Captured Data  
The robots’ motion should be animated with 

the highest degree of realism possible using motion 
capture data or accurate full-body simulation, while 
the multitudes secondary details to the auxiliary 
elements (scene, cameras, etc.) can be simulated at 
much lower fidelity. 

One transfers, via intelligent interface, the joint 
angle data from a motion capture system to a 
kinematic model for an anthropomorphic robot. To 
generate the desired motion sequence for the real 
robot, one capture the motions from a virtual robot 
model and map these to the joint settings of the 
physical robot. 

Initially, a set of virtual postures is created to 
the virtual robot and the pictures’ positions are 
recorded for each posture, during motion. These 
recorded pictures’ positions provide a set of 
Cartesian points in the 3D capture volume for each 
posture.  

To obtain the final real robot posture, the 
virtual pictures’ positions are assigned as positional 
constraints on the physical robot. To derive the joint 
angles one use standard inverse kinematics (IK) 
routines. The IK routine then directly generates the 
desired joint angles on the robot for each posture. 

In this paper one use the virtual robot 
prototypes and the motion capture systems to obtain 
the reference motion data, which typically consist of 
a set of trajectories in the Cartesian space. 

The data is obtained using a motion capture 
channel taking into account the joint motion range. 
Due to the joint limits and the difference between 
the kinematics of the virtual and real robot, the joint 
angle data are pre-processed.  

In the pre-processing stage, one assumes that 
both virtual and physical robots are on the scene at 
the same time and estimate the correct arms position 
and orientation. 

One then compute the inverse kinematics for 
new posture to obtain the cleaned joint angles and 
retain the difference from reference joint angles.  

At each frame during control, one adds the 
difference to the reference data to obtain the cleaned 
reference joint angles. This correction is extremely 
simple and the controller does not require 
supplementary cleanup. 

 
4. Controller composition  

Figure 2 shows the overview of the controller. 
The two main components are a situation controller 
and a tracking controller. The situation controller is 
responsible for keeping the whole physical structure 

in equilibrium, usually using a controller designed 
for a simplified dynamics model, such as Linear 
Quadratic Regulator (LQR). The output of the 
situation controller is the desired input to the track 
controller. 

 

 
Figure 2. Overview of the controllers 

 
The tracking controller is responsible for 

making every joint track the desired trajectory. It 
solves an optimization problem that respects both 
joint tracking and desired inputs to the simplified 
model and obtains the joint torques to be 
commanded to the real robot. 

 
5. Simplified virtual model 

The basic essence of this framework is to 
describe each rigid object in the planning scene as a 
dynamical system, which is characterized by its 
state variables (i.e. position, orientation, linear and 
angular velocity). 

One supposes that the simplified virtual model 
is linear and represented by the following state-
space differential equation: 

uBAxx +=& , (1) 
 

xC=y , (2) 

where x is the state vector, u is the input, and y is 
the output of the simplified virtual model. Also one 
assumes that is used a state feedback controller for 
equilibrium: 

)( xxK −=
ref

u , (3) 

where K is a constant gain matrix and xref is a 
reference state, typically computed from the 
reference motion. 
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An observer compares the estimated and actual 
outputs to update the state estimatex̂  as: 

)ˆ(ˆˆ yyu −++= FBxAx& , (4) 

where F is the observer gain and xC ˆˆ =y  is the 
estimated output. Because do not have access to real 
state, one replaces the state x with its estimate x̂  in 
Eq. (3): 

)ˆ( xxK −=
ref

u . (5) 

Using Eqs. (1), (2), (4) and (5), one obtains the 
following system of the estimated state and new 
input: 

b
u

bb
BxAx += ˆ&̂  

TTyT
refb

u )(x=  
(6) 

where: 
FCBKAA −−=

b
 

FBB −=
b

. 

Equation (6) describes how to estimate the 
current state of the simplified virtual model based 
on a reference state and measured output.  

The estimated state and input to the simplified 
virtual model computed by Eq. (5) will be used as 
the input to the tracking controller. 

The system of tracking controller for each joint 
consists of two local controllers and a joint torque 
optimization. 

 
6. Joint Controllers 

One denotes the number of actuated joints of 
the robot by Nj. The total degrees of freedom (DOF) 
of the robot are then Nj including the translation and 
rotation joints type. One also denotes the 
generalized force by τj. 

The articulated robot configuration is uniquely 
defined by the generalized coordinate q.  

One supposes that virtual robots usually move 
with some of their links in contact with the virtual 
objects, in potentially state of collision in the virtual 
space. More of that, one can intersect any virtual 
structure without risk to be destroyed.  

Let Nc denote the number of links which will be 
in contact. One represents the linear and angular 
velocities of the i-th contact link by a 6-dimensional 
vector

ciX& . The relationship between the 

generalized velocity q& and 
ciX&  is written as: 

qJX &&
cici =  (7) 

where Jci is the Jacobian matrix of the i-th contact 
link’s position and orientation with respect to the 
generalized coordinates.  

Differentiating Eq. (7), one obtains the 
relationship of the accelerations: 

qJqJX &&&&&&
cicici +=  (8) 

One defines the compound contact Jacobian 
matrix Jc, by: 


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(9) 

Because the source joint is not actuated, one 
may only control the joint generalized force vector 
of the physical robot. In addition, each of the Nc 
links in contact receives contact force fci and moment, 
around the link local frame nci (i = 1, 2, …, Nc).  

One also defines the compound contact force / 
moment vector by: 

T
cNc

nT
cNc

T
c

nT
cc

fff ⋅⋅⋅=
11

 (10) 

The equation of motion of the robot is written as: 

c
T
cj

T fJτNGqM +=+&&  (11) 

where M is the joint-space inertia matrix and G is 
the sum of Coriolis, centrifugal and gravity forces. 
Matrix N is used to map the joint torques into the 
generalized forces. 

One can use any simplified model as long as it 
represents the dynamics of the virtual robot and a 
situation controller can be designed. A typical 
example is a linear system, for which a regulator 
can be easily designed by optimal control. 

The local controllers compute the desired 
accelerations of joint and contact links based on the 
reference and current position and velocity as well 
as the reference accelerations [5]. 

In the joint controller, the desired acceleration 
q̂&&  is computed as follows at each joint: 

)()(ˆ qqqqqq −+−+=
refp

k
refd

k
ref

&&&&&&  (12) 

where q is the current joint position, qref is the 
reference joint position in the captured data, and kp 

and kd are constant position and velocity gains that 
may be different for each joint. 
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One assumes that the position and orientation 
of the virtual joints is available by computing the 
kinematics. One can therefore compute the desired 
linear and angular accelerations of the virtual joints, 
and combine them with all desired joint 
accelerations to form the desired acceleration 
vector

�

&̂& . 
Control law (12) is the same as the one used in 

resolved acceleration control except that the real 
robot joint is not actuated and the desired 
acceleration may be altered by the optimization 
stage.  

The models proposed arise naturally and 
provide a means of verifying the plausibility of the 
motion in the real environment. With further work it 
should be possible to experimentally obtain more 
accurate robot dynamically models who require 
finding good imitation. 

 
7. General architecture of motion imitation 

The general architecture includes simulation, 
visualization, and planning. 

The simulation module is the primary location 
for the development and testing of new controllers, 
and contains a set of features which are useful for 
developers. 

The visualization module provides an interface 
to develop alternative implementations. 

Task planner follows the planed motion in the 
simulation module 

All of the abstract notions described in this 
section interact according to Figure 3. 

 

 
Figure 3. The general structure of the planning modules 

The task planner contains multiple motion 
planners. The task planner also contains a world 
model and communicates with the simulator. 

The task planners are responsible for defining 
the objective of the planning process, while the 
motion planners actually generate the plan and 
allows planning until it has computed a path to a 
specified goal.  

The motion planners are the individual motion 
planning algorithms which compute controls. The 
planning system is divided among several modules 
in order to accomplish these tasks. The task 
coordination module contains motion planners for 
generating sequences of controls.  

World models can be used to reduce 
dimensions of the state space, from the motion 
planners. It is useful for planning because the 
planning process has complexity which depends on 
the dimensionality of the space. This reduction will 
make the planning process more efficient, and is 
related to being able to remove some systems from 
collision checking.  

These two functions together allow a full 
simulation to be loaded, while allowing the 
planning of the robots individually in a decoupled 
manner, for greater efficiency.  

The collision checker describes which pairs of 
geometries objects should be interacting in the 
simulation. The collision checker is actually 
responsible for performing the checks and reporting 
when geometries have come into contact. 

Validity checkers provide a way to determine if 
a given state is valid. The most basic 
implementation of a validity checker takes a state, 
translates it into its geometrical configuration, and 
checks if there is a collision between the geometry 
of the robots and the environment. 

Samplers are able to generate samples within 
the bounds of an abstract space.  

Distance metrics are responsible for 
determining the distance of points in a space. These 
modules may use simple interpolating methods or 
may be extended to be more complex and take into 
account invalid areas of the space.  

The planning package communicates primarily 
with simulation. A planning module can send 
messages to the simulation such as computed plans 
for the robots. The planning module can further 
send trajectory and planning structure information 
to visualization, so users can see the results of an 
algorithm.  

Users interact with the simulation environment 
through the visualization. This includes, but is not 
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limited to, camera interaction and computer screen. 
The visualization provides an interface to develop 
alternative implementations. 

 
8. Conclusion 

Collision detection strategy is based on 
identifying the zero-velocity impact points, between 
virtual objects, in the moment of the impact. The 
null velocity in the moment of the impact requires a 
highly accurate model of robot dynamics and the 
environment in order to achieve the collision 
avoidance.  

So, the problem of the contact detection is 
better analyzed on the virtual prototypes in the 
virtual environment where one predict there 
behavior. The problem of the contact detection in 
the virtual environment on the virtual robots is 
important for the reason that this built-in function is 
proven superior to other collision detection devices. 

The contact of two objects is possible in the 
virtual world, where the virtual objects can be 
intersected and no exist the risk to be destroyed. 

Programming approach such as programming 
by imitation is more flexible and can adapt to 
environmental change. This method is typically 
directly applicable to cooperative robots due the 
possibility to transfer the virtual joint trajectories 
from virtual space to the real space of the physical 
robots.  

The experimental results were obtained from 
evaluating the controller in a variety of scenarios 
concerning the reciprocal collision avoidance. 

Programming real robots, especially to perform 
the behaviour of the virtual robots is accomplished 
by imitation using virtual robots motion data 
capture.  

The real (physical) robot will imitate her virtual 
prototype; it has no supplementary devices for 
collision avoidance, and gives it higher reliability 
and more cost efficiency. Also, since there is no 
device attached to the real robot tool, one no 
extends the tool offset distance, which allows bigger 
maximum tool weight and better reorientation 
performance. 
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