

87

ROBOT COLLISION AVOIDANCE
USING PROGRAMMING THROUGH IMITATION

Aurel FRATU

Transilvania University of Brasov, Romania

Abstract. This paper deals with the collision avoidance of the cooperative robots using the programming through
imitation. Each physical robot acts fully independently, communicating with corresponding virtual prototype and
imitating her behaviour. Each physical robot reproduces the motion of her virtual prototype. The estimation of the
collision-free actions of the virtual cooperative robots and the transfer of the virtual joint trajectories to the physical
robots who imitate there virtual prototypes, are the original ideas. We tested the present strategy on several simulation
scenarios, involving two virtual robots and estimating collision-free actions, during of the cooperative tasks.

Keywords: cooperative robots, collision avoidance, motion imitation, estimated path

1. Introduction

Cooperative robots are permanently in danger
to be in collision. Therefore installations with
cooperative robots in real world, require collision
avoidance methods, which take into account the
mutual constraints of the robots. Generating
motions for real or virtual robots, which are coupled
to a task, is usually a complicated problem.

A key requirement for cooperative efficient
operation is good coordination and reciprocal
collision avoidance.

The contact of the robot with an obstacle must
be detected and it will cause the robot to stop
quickly and thereafter back off to reduce forces
between the robot and environment.

The problem of the contact with obstacle
imposes the null velocity in the moment of the
impact and to obtain the zero-velocity points on the
pathway. The collision detection simply determines
if two geometric objects are intersecting or not. The
intersecting of two objects is possible in the virtual
world, where the virtual objects can be even
intersected and there no exist the risk to be
destroyed. The contact detection between the virtual
objects is responsible for determining the distance
between two points in a space and substitutes the
distance metrics devices. This strategy may use
simple CAD methods or may be extended to be
more complex and take into account invalid areas of
the space.

Using this strategy one detects collisions in all
directions, protecting not only the physical end-
effectors but also the work pieces and the physical
robot itself.

The ability of predicting of the behavior of
cooperative robots is important in design; the
designers want to know whether the robot will be
able to perform a typical task in a given time frame

into a space with constraints.
The control engineer cannot risk a valuable

piece of equipment by exposing it to untested
control strategies. Therefore, a facile strategy for
contact detection and collision avoidance, capable
of predicting the behavior of robotic manipulators,
becomes imperative.

When the robots need to interact with their
surrounding, it is important that the computer can
simulate the interactions of the cooperative
participants, with the passive or active changing
environment in the graphics field, using virtual
prototyping.

In this paper, one propose a fast method that
simultaneously determines actions for two virtual
robots that each must cooperate with other.

The actions for the cooperative tasks are
computed for each virtual robot and are transferred,
with a central coordination to corresponding
physical robot which must imitate her virtual
homonym.

Thus, one proves that our method guarantees
the collision-free motion for each of the cooperative
robots. The planning package communicates
primarily with simulation. A planning module can
send messages to the simulation such as computed
plans for the robots. The planning module can
further send trajectory and planning structure
information to visualization so users can see the
results of an algorithm.

The planning module also receives control
signals from the simulation module, such as when
to start planning joint trajectories.

The visualization module is responsible for
visualizing any aspect needed by the programmer.
Users interact with the simulation environment
through the visualization. This includes, but not
limited to, computer screen and cameras video.

RECENT, Vol. 14, no. 2(38), July, 2013

88

The visualization provides an interface to
develop interactive implementations based on
imitation strategy. Optimization of the real robots
behaviour is performed in the low dimensional
virtual space using the virtual robot prototypes.

This paper is focused on the collision
avoidance through transfer the motion mapping
from virtual space, in 3-D dimensional real space.

2. Overview of Learning by Imitation

Imitation is an important learning mechanism
in many intelligent systems including robots. It is
easy to recuperate kinematic information from
virtual robot motion, using for example motion
capture. Imitating the motion with stable robot
dynamics is a challenging research problem [7].

In this framework a physical robot arm can be a
collection of rigid bodies, subject to the influence of
various forces in the workspace, and restricted by
various motion constraints.

One propose a control strategy for two physical
cooperative robots that uses capture data from their
virtual prototypes and imitate them to track the
motion in the real space avoiding the collision. One
present an model, for which robust controller can be
easily designed. A typical example is a linear
quadratic regulator (LQR) [4], which one use for
our examples.

Joint trajectory tracking is enabled by
commanding desired joint accelerations based on
joint angle and velocity errors as well as supply
forward joint accelerations. One applies the
controller to tracking motion capture clips of two
cooperative robots who accomplish a collaborative
task. The resulting robot motion clearly preserves
the original behavior of each virtual robot.

In addition, the controller does not require
intensive pre-processing of motion capture data,
which makes it potentially applicable to real time
applications.

In this paper, one propose an approach to
achieving pathway acquisition in robots
programming, using imitation strategy.

The framework for our method is shown in
Figure 1.

First, a motion capture system transforms
Cartesian position of virtual robot structure to
virtual joint angles based on kinematic model.
Then, the joint angles are converted in binary words
and transferred to real robot joint controllers via
intelligent interface. After this one use the control

loops structure to establish relationships between
the virtual and real robot control systems.

One employs dimensionality reduction to
represent posture information in a virtual low-
dimensional space [3].

 a)

 b)
Figure 1. A framework for robot learning by imitation

Virtual cooperative robots (a) - Real cooperative robots (b)

In particular, for reciprocal correspondence,
sensory feedback data are recorded from the real
robot during motion [2]. A causal relationship
between actions in the low dimensional virtual
space and the expected sensory feedback is learned.
This learned sensory motor mapping allows virtual
motion dynamics to be optimized.

As well an inverse mapping from the real joint
space, back to the original virtual joint space is then
used to generate optimized motion.

One present result demonstrating that the
proposed approach allows a real robot to learn move
based exclusively on virtual robot motion capture
without the need for a detailed physical model of
the robot.

The paper is focused on tracking joint angle
trajectories, although some cooperative tasks may
require tracking other quantities such as end-
effectors trajectories which will be addressed in
future work.

RECENT, Vol. 14, no. 2(38), July, 2013

89

3. Processing of the Motion Captured Data
The robots’ motion should be animated with

the highest degree of realism possible using motion
capture data or accurate full-body simulation, while
the multitudes secondary details to the auxiliary
elements (scene, cameras, etc.) can be simulated at
much lower fidelity.

One transfers, via intelligent interface, the joint
angle data from a motion capture system to a
kinematic model for an anthropomorphic robot. To
generate the desired motion sequence for the real
robot, one capture the motions from a virtual robot
model and map these to the joint settings of the
physical robot.

Initially, a set of virtual postures is created to
the virtual robot and the pictures’ positions are
recorded for each posture, during motion. These
recorded pictures’ positions provide a set of
Cartesian points in the 3D capture volume for each
posture.

To obtain the final real robot posture, the
virtual pictures’ positions are assigned as positional
constraints on the physical robot. To derive the joint
angles one use standard inverse kinematics (IK)
routines. The IK routine then directly generates the
desired joint angles on the robot for each posture.

In this paper one use the virtual robot
prototypes and the motion capture systems to obtain
the reference motion data, which typically consist of
a set of trajectories in the Cartesian space.

The data is obtained using a motion capture
channel taking into account the joint motion range.
Due to the joint limits and the difference between
the kinematics of the virtual and real robot, the joint
angle data are pre-processed.

In the pre-processing stage, one assumes that
both virtual and physical robots are on the scene at
the same time and estimate the correct arms position
and orientation.

One then compute the inverse kinematics for
new posture to obtain the cleaned joint angles and
retain the difference from reference joint angles.

At each frame during control, one adds the
difference to the reference data to obtain the cleaned
reference joint angles. This correction is extremely
simple and the controller does not require
supplementary cleanup.

4. Controller composition

Figure 2 shows the overview of the controller.
The two main components are a situation controller
and a tracking controller. The situation controller is
responsible for keeping the whole physical structure

in equilibrium, usually using a controller designed
for a simplified dynamics model, such as Linear
Quadratic Regulator (LQR). The output of the
situation controller is the desired input to the track
controller.

Figure 2. Overview of the controllers

The tracking controller is responsible for

making every joint track the desired trajectory. It
solves an optimization problem that respects both
joint tracking and desired inputs to the simplified
model and obtains the joint torques to be
commanded to the real robot.

5. Simplified virtual model

The basic essence of this framework is to
describe each rigid object in the planning scene as a
dynamical system, which is characterized by its
state variables (i.e. position, orientation, linear and
angular velocity).

One supposes that the simplified virtual model
is linear and represented by the following state-
space differential equation:

uBAxx +=& , (1)

xC=y , (2)

where x is the state vector, u is the input, and y is
the output of the simplified virtual model. Also one
assumes that is used a state feedback controller for
equilibrium:

)(xxK −=
ref

u , (3)

where K is a constant gain matrix and xref is a
reference state, typically computed from the
reference motion.

RECENT, Vol. 14, no. 2(38), July, 2013

90

An observer compares the estimated and actual
outputs to update the state estimatex̂ as:

)ˆ(ˆˆ yyu −++= FBxAx& , (4)

where F is the observer gain and xC ˆˆ =y is the
estimated output. Because do not have access to real
state, one replaces the state x with its estimate x̂ in
Eq. (3):

)ˆ(xxK −=
ref

u . (5)

Using Eqs. (1), (2), (4) and (5), one obtains the
following system of the estimated state and new
input:

b
u

bb
BxAx += ˆ&̂

TTyT
refb

u)(x=
(6)

where:
FCBKAA −−=

b

FBB −=
b

.

Equation (6) describes how to estimate the
current state of the simplified virtual model based
on a reference state and measured output.

The estimated state and input to the simplified
virtual model computed by Eq. (5) will be used as
the input to the tracking controller.

The system of tracking controller for each joint
consists of two local controllers and a joint torque
optimization.

6. Joint Controllers

One denotes the number of actuated joints of
the robot by Nj. The total degrees of freedom (DOF)
of the robot are then Nj including the translation and
rotation joints type. One also denotes the
generalized force by τj.

The articulated robot configuration is uniquely
defined by the generalized coordinate q.

One supposes that virtual robots usually move
with some of their links in contact with the virtual
objects, in potentially state of collision in the virtual
space. More of that, one can intersect any virtual
structure without risk to be destroyed.

Let Nc denote the number of links which will be
in contact. One represents the linear and angular
velocities of the i-th contact link by a 6-dimensional
vector

ciX& . The relationship between the

generalized velocity q& and
ciX& is written as:

qJX &&
cici = (7)

where Jci is the Jacobian matrix of the i-th contact
link’s position and orientation with respect to the
generalized coordinates.

Differentiating Eq. (7), one obtains the
relationship of the accelerations:

qJqJX &&&&&&
cicici += (8)

One defines the compound contact Jacobian
matrix Jc, by:



























=

cNc

c

c

c

c

J

J

J

J

J
3

2

1

(9)

Because the source joint is not actuated, one
may only control the joint generalized force vector
of the physical robot. In addition, each of the Nc
links in contact receives contact force fci and moment,
around the link local frame nci (i = 1, 2, …, Nc).

One also defines the compound contact force /
moment vector by:

T
cNc

nT
cNc

T
c

nT
cc

fff ⋅⋅⋅=
11

 (10)

The equation of motion of the robot is written as:

c
T
cj

T fJτNGqM +=+&& (11)

where M is the joint-space inertia matrix and G is
the sum of Coriolis, centrifugal and gravity forces.
Matrix N is used to map the joint torques into the
generalized forces.

One can use any simplified model as long as it
represents the dynamics of the virtual robot and a
situation controller can be designed. A typical
example is a linear system, for which a regulator
can be easily designed by optimal control.

The local controllers compute the desired
accelerations of joint and contact links based on the
reference and current position and velocity as well
as the reference accelerations [5].

In the joint controller, the desired acceleration
q̂&& is computed as follows at each joint:

)()(ˆ qqqqqq −+−+=
refp

k
refd

k
ref

&&&&&& (12)

where q is the current joint position, qref is the
reference joint position in the captured data, and kp

and kd are constant position and velocity gains that
may be different for each joint.

RECENT, Vol. 14, no. 2(38), July, 2013

91

One assumes that the position and orientation
of the virtual joints is available by computing the
kinematics. One can therefore compute the desired
linear and angular accelerations of the virtual joints,
and combine them with all desired joint
accelerations to form the desired acceleration
vector

�

&̂& .
Control law (12) is the same as the one used in

resolved acceleration control except that the real
robot joint is not actuated and the desired
acceleration may be altered by the optimization
stage.

The models proposed arise naturally and
provide a means of verifying the plausibility of the
motion in the real environment. With further work it
should be possible to experimentally obtain more
accurate robot dynamically models who require
finding good imitation.

7. General architecture of motion imitation

The general architecture includes simulation,
visualization, and planning.

The simulation module is the primary location
for the development and testing of new controllers,
and contains a set of features which are useful for
developers.

The visualization module provides an interface
to develop alternative implementations.

Task planner follows the planed motion in the
simulation module

All of the abstract notions described in this
section interact according to Figure 3.

Figure 3. The general structure of the planning modules

The task planner contains multiple motion
planners. The task planner also contains a world
model and communicates with the simulator.

The task planners are responsible for defining
the objective of the planning process, while the
motion planners actually generate the plan and
allows planning until it has computed a path to a
specified goal.

The motion planners are the individual motion
planning algorithms which compute controls. The
planning system is divided among several modules
in order to accomplish these tasks. The task
coordination module contains motion planners for
generating sequences of controls.

World models can be used to reduce
dimensions of the state space, from the motion
planners. It is useful for planning because the
planning process has complexity which depends on
the dimensionality of the space. This reduction will
make the planning process more efficient, and is
related to being able to remove some systems from
collision checking.

These two functions together allow a full
simulation to be loaded, while allowing the
planning of the robots individually in a decoupled
manner, for greater efficiency.

The collision checker describes which pairs of
geometries objects should be interacting in the
simulation. The collision checker is actually
responsible for performing the checks and reporting
when geometries have come into contact.

Validity checkers provide a way to determine if
a given state is valid. The most basic
implementation of a validity checker takes a state,
translates it into its geometrical configuration, and
checks if there is a collision between the geometry
of the robots and the environment.

Samplers are able to generate samples within
the bounds of an abstract space.

Distance metrics are responsible for
determining the distance of points in a space. These
modules may use simple interpolating methods or
may be extended to be more complex and take into
account invalid areas of the space.

The planning package communicates primarily
with simulation. A planning module can send
messages to the simulation such as computed plans
for the robots. The planning module can further
send trajectory and planning structure information
to visualization, so users can see the results of an
algorithm.

Users interact with the simulation environment
through the visualization. This includes, but is not

RECENT, Vol. 14, no. 2(38), July, 2013

92

limited to, camera interaction and computer screen.
The visualization provides an interface to develop
alternative implementations.

8. Conclusion

Collision detection strategy is based on
identifying the zero-velocity impact points, between
virtual objects, in the moment of the impact. The
null velocity in the moment of the impact requires a
highly accurate model of robot dynamics and the
environment in order to achieve the collision
avoidance.

So, the problem of the contact detection is
better analyzed on the virtual prototypes in the
virtual environment where one predict there
behavior. The problem of the contact detection in
the virtual environment on the virtual robots is
important for the reason that this built-in function is
proven superior to other collision detection devices.

The contact of two objects is possible in the
virtual world, where the virtual objects can be
intersected and no exist the risk to be destroyed.

Programming approach such as programming
by imitation is more flexible and can adapt to
environmental change. This method is typically
directly applicable to cooperative robots due the
possibility to transfer the virtual joint trajectories
from virtual space to the real space of the physical
robots.

The experimental results were obtained from
evaluating the controller in a variety of scenarios
concerning the reciprocal collision avoidance.

Programming real robots, especially to perform
the behaviour of the virtual robots is accomplished
by imitation using virtual robots motion data
capture.

The real (physical) robot will imitate her virtual
prototype; it has no supplementary devices for
collision avoidance, and gives it higher reliability
and more cost efficiency. Also, since there is no
device attached to the real robot tool, one no
extends the tool offset distance, which allows bigger
maximum tool weight and better reorientation
performance.

References
1. Weinstein, R., Teran, J., Fedkiw, R. (2005) Dynamic

simulation of articulated rigid bodies with contact and
collision. Journal IEEE Transactions on Visualization and
Computer Graphics, vol. 12, no. 3, p. 365-374

2. Zordan, V., Hodgins, J. (2002) Motion Capture-Driven
Simulations that Hit and React. Proceedings of ACM
SIGGRAPH Symposium on Computer Animation, San
Antonio, TX, July 2002, p. 89-96

3. Silver, D. (2005) Cooperative path finding. The 1st
Conference on Artificial Intelligence and Interactive Digital
Entertainment (AIIDE’05), p. 23-28

4. Pettre, J., Ondrej, J., Olivier, A.-H., Cretual, A., Donikian, S.
: Experiment based modeling, simulation and validation of
interactions between virtual walkers. Symposium on
Computer Animation, Association for Computing
Machinery (ACM), 2009

5. Reist, P., Tedrake, R. (2010) Simulation-based LQR-trees
with input and state constraints. In Proceeding of the IEEE
International Conference on Robotics and Automation
(ICRA), p. 5504 -5510

6. Gold, K. (2009) An information pipeline model of human-
robot interaction. Proceedings of the 4th ACM/IEEE
international conference on Human robot interaction, ISBN
978-1-60558-404-1, p. 85-92, New York, NY, USA,
doi.acm.org/10.1145/1514095

7. Powers, A., Kiesler, S., Fussell, S., Torrey, C. (2007)
Comparing a computer agent with a humanoid robot.
Proceedings of the ACM/IEEE international conference on
Human-robot interaction (HRI '07), ACM, New York, NY,
USA, p. 145-152

8. Price, B., Boutilier, C. (2003) Accelerating reinforcement
learning through implicit imitation. Journal of Artificial
Intelligence Research, vol. 19, p. 569-629

Received in June 2013

