

99

A GENERALIZED NEWTON-EULER ALGORITHM FOR DYNAMIC
SIMULATION OF ROBOT-MANIPULATORS WITH REVOLUTE JOINTS

Bozhidar GRIGOROV

Technical University of Sofia, Bulgaria

Abstract. This article describes a procedure used to compose a set of second order differential equations in order to
simulate dynamics of a multi-body manipulator's arm with revolution joints. The procedure is based on d'Alambert's
principle and Newton-Euler equations, and considers each of the manipulator’s links as in equilibrium under a multitude
of inertial, gravitational and driving forces in the process of its spatial motion. The method is straightforward and is
based on the repeatability of mathematical operations. The derived set of differential equation are easy to program and
could be integrated using standard routines. They also can be used to solve forward, as well as reverse dynamic
problems. The algorithm is verified by comparative studies using well known simulation packages as well as
experimental data. It can be very successfully applied on the stage of design when not all dynamic parameters of the
new device are sufficiently known.

Keywords: dynamic simulation, algorithm, Newton-Euler, robots, revolute joints

1. Introduction

Robot manipulators are complex mechanisms,
and their dynamic modeling is always a delicate
matter, usually serving two main purposes. First: to
investigate the behavior of the mechanical system
under the influence of a multitude of different
forces (including the driving ones) applied to the
links, and second: to help develop control
algorithms for desired motion of the robot arm
through space. There are two basic problems
associated with dynamics of robotic mechanical
systems, which are solved in order to serve the
above mentioned purposes – the forward and the
inverse problems.

Simply stated, the solving the forward problem
means to derive time-depended functions for the
joint variables given the driving force vector,
gravitational and other forces acting upon the links.
In the inverse problem, a time-history of either the
Cartesian or the joint coordinates is given, and
based on these histories, architecture and inertial
parameters of the system, torque or force
requirements at the different actuated joints are
computed. The latter is essential for the computed-
torque control of robotic manipulators, while the
former is required for the simulation as well as for
the real-time feedback control.

The study of the multiple rigid bodies systems
dynamics is a classical task and has long-standing
history. During a period of more than thirty years
considerable research has been done, leading to an
abundance of theoretical approaches based on
different methods - D’Alambert’s principle and
Newton-Euler equations, Euler-Lagrange equations,
etc. The application of computers has been a major
break-through as it allows numerical solutions of

highly non-linear problems and thus much more
precise formulation of the dynamic simulation tasks
for large number of articulated bodies.

Among the pioneers in this field Uicker [1, 2]
and then Kahn [3] produced a method based on the
Euler-Lagrange equations of rigid bodies
mechanical systems, which method is used to
simulate the dynamical behavior of such systems.
Hollerbach [4] developed efficient Lagrangian
formulation based on the recurrence relations for
the velocities, accelerations, and generalized forces.
Later, Armstrong [5] elaborated an recursive O(N)
algorithm for mechanisms including such with
spherical joints. Further on Li [6, 7] proposed a new
Lagrangian formulation of dynamics for
manipulators which results in well structured form
equations of motion, making it possible to realize
the computation of the robot manipulators dynamics
in real-time on a micro/mini-computer.

Early researchers developing inverse dynamics
algorithms for robotics used a Newton-Euler
formulation of the problem. Further on Luh,
Walker, and Paul [8] developed a very efficient
recursive algorithm (RNEA) that is applicable to
systems with serial kinematic chains. Fiesette at al.
[9] offered a fully symbolic generation of
multi-body models to deal with forward and reverse
problems for open and closed loop kinematic chains
and large number of bodies.

One of the most popular and cited constraint
based dynamics algorithms in use today is known as
the Featherstone algorithm. Originally developed
for use in robotics simulations, the algorithm has
become quite popular in physical simulations as it is
capable of simulating the motion of articulated
bodies in O(N) time, when the computation required

RECENT, Vol. 14, no. 2(38), July, 2013

100

scales linearly with the number of links in the
articulated body. Featherstone [10, 11] realized that
the efficiency of the simulation procedures was
directly related to the efficiency of computing the
joint space inertia (mass) matrix. He used efficient
transformations and link coordinates to reduce the
computation of the inertia matrix by about 30 %.

Today, the problems of robots dynamics are
subject of many books and monographs utilizing
different approaches while solving different
problems. Looking through the multitude of
publications one can easily recognizes several
principles, observations and directions of research:
o Formulations based on Newton-Euler or Euler-

Lagrange principles are equal when applied to the
multibody dynamic simulation problems. It was
first done by Silver [12] who showed how to
derive the Euler-Lagrange equation out of
Newton-Euler equations;

o The reverse dynamic problem is solved primarily
using recursive Newton-Euler formulation [11,
13, 14].

o The forwards problem is generally dealt by
integration of a set of second order differential
equations derived by means usually of Euler-
Lagrange equations.

o Considerable effort is made in order to optimize
and reduce the number of computations (additions
and multiplications) in order to work out optimum
algorithms, which lead to a variety of approaches
and interpretations. This is closely connected with
the necessities of real-time robots control.

In any case, deriving the set of differential
equations solving the forward problem for the needs
of simulation is tedious process prone to errors, and
its complexity increases sharply with the number of
degrees of freedom, while on many occasions the
algorithms remains confusing and difficult to
implement for many who are not specialists in the
area. On the other hand, using two different
approaches to solve the forward and reverse
dynamic problems requires additional efforts and
programming, which not always is quite convenient.

The aim of this article is to present a
straightforward, engineering approach to the
problem of dynamic simulation of articulated arms
using Newton-Euler equation and D'Alambert's
principle. It is based on the repeatability of
mathematical actions and presumes that all the
terms at the right side of the derived set of
differential equations should be numerically
obtained given some initial values. This solution is
easy to compose, and is intended to solve the

forward as well as the reverse problems of
manipulator's dynamics for the purpose of
simulation. The algorithm is easy to realize in any
mathematical package environment or other means
of programming, just following the derived
equations.

2. Method

In this article an open-link kinematic chain
consisting of n links connected by revolute joints
with one degree of freedom each is considered. The
links are numbered, starting from unmovable base,
and local frames with the same number are attached
to each link according to the classical Denavit-
Hartenberg notation [15]. In this case, for every two

adjacent links, a 4×4 transformation matrix 1j
j T + is

used to map positional vectors defined in {j+1}-th
frame in respect to the frame {j}, or:

10 0 0

 R
= T 1j1j

j

1j
j








 ++
+

P
. (1)

In the above formula 1+j
j R represents 3×3

rotational matrix describing orientation between the
frames, while 1j+P is a 3×1 vector of the {j+1}-th

frame origin described in {j}-th frame. Using the
Denavit-Hartenberg's notation with a single DoF for
each joint also presumes that all relative motions
between the articulated bodies are realized along the

ẑ axes of the link coordinate systems. Thus, for the
joint variables using vector-columns representation
should be written:

















θ
=

















θ
=

j

j

j

j
&

& 0

0

θ0

0

θ
















θ
=

j

j
&&

&& 0

0

θ . (2)

The links are set in motion via actuators which
exert a time or position dependent vector torque
τj(t) = [0 0 τj]

T at each joint.
In order to derive the generalized Newton-

Euler algorithm each link j is regarded as in static
equilibrium, at any moment of its spatial motion,
under a set of all forces and moments acting on it
(inertial, gravity, as well as actuator torque). Here
should be added all the forces and moments
"propagated" to the link under consideration from
“outboard” arms, those with greater successive
numbers (j < i ≤ n) as shown in Figure 1. These
links can be then considered as a rigid system
taking into account the fact that they are in the same
state of static equilibrium, and all components of

RECENT, Vol. 14, no. 2(38), July, 2013

101

the force and moment vectors are resisted by the
structure of the manipulator itself, as well as by the
actuator torques at the joints.

Summing all the moments at the origin of the
{ j}-th frame (according to D’Alambert’s principle)
leads to the following equation:

∑

∑

+=

+=

=++

+++−−−

n

1ji
jQ

j
Gi

j

Gji
j

n

1ji
Φi

j
jΦj

0)(

) (

tτNN

NNNNN

 (3)

where:
NΦj - a moment of the inertial force acting on the

link at the centre of gravity due to the linear
acceleration of the link;

Nj - an inertial torque acting on the link due to the
angular acceleration;

NGj - a moment of the gravity force (the weight of
the link) acting at the mass centre;

jNΦI,
jNi,

jNGi - moments of inertial force, inertial
torque, and moment of the gravity force; acting
on link i and expressed in terms of frame {j}
(j < i ≤ n);

jNQ - an external moment (of torque(s) or force(s))
acting upon the end effector (n-th link) during
the robot function and expressed in respect to
frame {j};

ττττj(t) - (usually time or position dependent) joint
torque exerted by the actuator at the joint j.

Figure 1. Local frames and forces acting on links

In order to find the inertial force and torque

acting at the centre of gravity of each link, Newton-
Euler equations are applied [14, 16]:

Cjjj . vΦ &m= ; jjjjjj . . ωωωN II ×+= & , (4)

which allows equation (3) to be rewritten in the
form:

0)(.R

)..(R

 .R. .R

jQ
j

i0
j

n

ji
Ci

j

n

ji
iiii

j

ii
j

n

ji
icii

j
Ci

j
n

ji
j

=++×

+×

−−×−

∑

∑

∑∑

=

=

==

t

I

Im

τNGP

ωω

ωvP &&

 (5)

In the above formulas:

Cjv& - linear acceleration of the mass centre of link j;

jω , jω& - angular velocity and accelerations of

frame {j} expressed in respect to the same
frame;

jm , jI - are the mass as well as the symmetric

inertia tensor of link j written in respect to a

frame which origin is located at the centre of
mass and has the same orientation as link frame
{ j};

Ci
j P - position of the mass centre of link i expressed

in terms of {j}-th frame;

i
j R - rotational matrix describing the orientation of

frame {i} in respect to the frame {j};
The gravity force, acting on each link, is

considered as described easily in some basic,
unmovable frame {0}. Assuming the ẑ coordinate
of such a frame pointing vertically up, which often
is the usual case, the gravity vector-force could be
designated as: Gj = [0 0 –mj⋅g]T where g is the
earth acceleration.

Further on, expressions to calculate linear and
angular velocities and accelerations of each link
must be derived. Taking the advantage of
manipulator structure as a chain of bodies, each one
capable of motion relative to its neighbors,
computing the velocities and accelerations jω , jω& ,

jv and jv& of each link is done starting from the

RECENT, Vol. 14, no. 2(38), July, 2013

102

base [16]. Or for a chain with revolute joints the
following recursive dependences could be written:

j1-j1-j
j

j .R θωω &+=

jj1-j1-j
j

1-j1-j
j

j .R .R θθωωω &&&&& +×+=

) .(R j1-j1-j1-j
j

j Pωvv ×+=

jCjjjCjjCj

1-jj1-j1-jj1-j1-j
j

j

) (

]) (.[R

vPωωPωv

vPωωPωv

&&&

&&&

+××+×=

+××+×=

(6)

Here position, velocity and acceleration at joint

j: jθ , jθ
& and jθ

&& represent 3×1 column vectors as

shown by (2).
Initiating from the frame {0} which has

velocities and accelerations equal to zero, and
substituting jv& , Cjv& , jω and jω& in formulas (6), for

each link the equations given bellow are valid:

∑
=

=
j

1i
ji

j
j .R θω &

j

j

1i
ii

j
j .R εCθω +=∑

=

&&&

Vj

1-j

1i
i

j
ii

j
j)P- .R(Cθv +×=∑

=

&&&

VCj

j

1i
Cji

j
ii

j
Cj)] - (.R[CPPθv ++×=∑

=

&&&

(7)

As it is clear from (7), the aim is to separate the
members of (5) which do not contain angular
accelerations at joins. For j > 1 those members are
given as:

j1j1j
j

1-εj1j
j

εj .R .R θωCC &×+= −−−

]

)(.[

1-Vj

j1j1jj1-j ε1j
j

Vj

C

PωωPCC +××+×= −−−R

VjCjjjCjjVCj) CP(ωωPCC +××+×= ε

(8)

Next step is to derive the set of second order
differential equations in the form similar first to
that, proposed by Vukobratovic and Potkonjak [17]:

)(),(H)().(M tτθθθGθθ +−= &&& , (9)

which can be easily integrated. Substituting (7) and
(8) in (5), getting across to the left side of the

equation all the members containing jθ
&& , and

noticing that:

ii
j

Cji
j

Cji
j

ii
j .R) () - (.R θPPPPθ &&&& ×−=+× ,

due to the skew-symmetric property of the vector
product, for the link number j the equation of the
equilibrium will be:

)(.CR .

..R -). .(R

 - .R .R..R

].R) .[(R .

iQ
j

VCii
j

n

ji
Ci

j
i

εiii

n

ji

j
n

ji
iii

j

i0
j

n

j
Ci

j
kk

i
n

1k

n

li
ii

j

kk
i

n

1k

n

li
Cik

i
i

j
Ci

j
i

tm

II

I

m

i

i

τNP

Cωω

GPθ

θPPP

++×

−×

×=

+×−×

∑

∑∑

∑∑∑

∑∑

=

==

== =

= =

&&

&&

jk k

jk if j
l

>
≤

=

(10)

Further on, the vector preproduct tensor is used
in order to replace the vector product in the
equation (8) with matrix multiplication. Utilizing
the 3×3 skew-symmetric matrix form of the vectors

 Ci
j P and) (Cik

i PP − or:

=×−× k
i

Cik
i

i
j

Ci
j R) .(R PPP

= k
i

i
j

Ci
j V.R.V . k

i R ;

Ci
j V =

















−
−

−

0

0

0

ci
j

ci
j

ci
j

ci
j

ci
j

ci
j

xy

xz

yz

.

(11)

k
i V is computed likewise.
Taking into account (11), the state of

equilibrium for link j is finally described by the
equation (12):

)(C ...R

 -). .(R- .R

).R..R R.V.R.V.(

iQ
j

VCiCi
j

εiii
j

iii
j

i0
j

j
Ci

j

kk
i

i
j

k
i

n

1k

n

li
k

i
i

j
Ci

j
i

tmI

I

Im

i

i

n

i

i

τNPC

ωωGP

θ

++×−

××

=+

∑

∑∑

=

= =

&&

jk k

jk if j
l

>
≤

=

(12)

As it was said above, when consider kinematic
chains with joints having single degree of freedom,

any motion should be possible only along the ẑ axis
of the respective joint coordinate system, and all
velocities, accelerations as well as joint torques
should have the form (2). Thus, the set of second
order ordinary differential equations (9) is formed
by taking the dot products of (12) and the unit
vector jẑ for each link (1 ≤ j ≤ n). These equations

finally describe the motion of the system under the
own weights of the links, forces applied to the end
effector as well as the vector of joint driving torques

RECENT, Vol. 14, no. 2(38), July, 2013

103

ττττ. Note, that one can also add to the right side of
equation (12) any other conceivable, known,
external forces acting upon links.

Equation in the form (6) is considered as
initial-value problem and is easy to integrate
utilizing Runge-Kutta or Kutta-Merson methods
and standard routines, as it could be written in the
form:

)](),(H)().[(M -1
θGθθτθθ +−= &&& t . (13)

Equation (13) could be easily solved for ττττ(t)
given the time histories of positions, velocities and
acceleration computed via some trajectory planning
algorithm in joint or Cartesian space. This is
straightforward way to obtain the necessary driving
torques in joints and thus to solve the reverse
problem.

3. Numerical example

In order to illustrate end test the algorithm, an
experimental, heavy duty hydraulically driven, five
DoF manipulator is considered. The 3D CAD model
of the manipulator is shown in Figure 2. The
manipulator is intended for moving loads along
certain trajectory in space. A load of 3200 N is
attached to the last link.

Figure 2. 3D CAD model of hydraulically driven

manipulator

Solving the inverse problem. The trajectories in

joint space are generated, using third order
polynomials, for three trajectory points – start,
middle and end, while the manipulator does not stop
at the middle point. The trajectory points are
specified by the coordinates of the load mass center
and its orientation – rotation about the vertical axis
(must be pointed out that the load is horizontal at
any time). This allows solving the inverse kinematic
problem for five DoF). The time history of
positions, velocity and accelerations for each joint

(jjj , , θθθ &&&) are shown in Figure 3.

Figure 3. Time histories of positions, velocity and

accelerations for five DoF manipulator

The solution of the equation (13) for ττττ(t) is

done by programming using the Matlab
mathematical package. The result for the joints 2 to
4 (rotation about parallel horizontal axes) is shown
in Figure 4.

The forward problem. To illustrate the above
ratiocination, let consider revolving joints driven by
hydraulic actuators.

Let assume that the pistons move with constant
speed, while at a certain moment of time occurs
sudden closure of the hydraulic valves. Further

RECENT, Vol. 14, no. 2(38), July, 2013

104

movement of the arms will be possible due to the
compression of the working fluid as well as flexible
pipes, presenting the driving torque as position
dependent function. The process is a considerably
complex one to be presented here in details, but it
could be shown that the actual forces, velocities,
elasticity and damping in the actuators can be
transferred to the joint variables giving the law of
the driving torques in the form:

jjj0jjj dk θ⋅−θ−θ⋅=τ &)(, (14)

where kj is the elastic stiffness, dj - damping factor,
both transferred to the revolute joint, and θj0
represents the free position (a position with zero
elastic torque).

Figure 4. Computed necessary driving torques for joints

2 to 4

Substituting (14) in (12) and supplying the
proper values for elasticity, damping and free
position, as well as the initial values for positions
and velocities for each joint, a set based on equation
(12) for each link is integrated using standard
routine. Results of such integration in the form of
oscillations about the initial position of each joint
are shown in Figure 5. The integration is done as
initial value problem utilizing Matlab package with
ODE23 solver.

4. Discussion and conclusion

In many cases, especially on the stage of
design, often arises the need to simulate dynamic
behavior of still not completely known product. On
some occasions it is the need to determine the
magnitude of the dynamic forces in large variety of
operational conditions. Such dynamics forces with
high capacity, fast moving manipulator arms could
be considerable and must be taken into account
when considering the structural integrity of the
design. On the other hand, dynamic simulation
could be required in order to create suitable control
algorithms or to select the right driving system and
actuators – electric drives, hydraulic actuators, etc.
In general, all that tasks could be solved using some
of the proposed algorithms and methods outlined in
section one, but many of them are strictly
specialized (mainly serving the purposes of real–
time numerical control) and have to be modified in
order to serve some design purposes.

Figure 5. Oscillation about the initial positions

The algorithm proposed in this article uses an

engineering approach to the problems of dynamic
simulation of multibody systems forming an open-
loop kinematic chain with revolute joints. Such

RECENT, Vol. 14, no. 2(38), July, 2013

105

designs form the majority of the equipment in use –
industrial robots or outdoor materials handling
equipment. This approach is based on Newton-
Euler equations and state of equilibrium of each
body during its spatial motion. It could be used to
easily compose a set of second order differential
equation describing the dynamic behavior, given
particular time dependent or position dependent
functions of driving torques in joints. Such set of
differential equations should be integrated by
standard routines. The advantage of the proposed
method is that the set of equations can easily be
written following the described rules and derived
formulas, simply adding new members with the
number of bodies increasing. Although such an
algorithm is not very effective from order of growth
point of view - close to O(N2), it could quite well be
implemented for vast majority of cases when fast
response is not necessary (one example is to use the
results presented in Figure 4 for optimal design of
the driving system).

The same sets of differential equations are to be
used in order to solve reverse dynamic problem.
Here however, all the equations are derived in
closed form which leads to the direct computation
of necessary joint torques. The closed form of the
equations also permits a piecewise solution – each
torque is computed without regard to the others.

A procedure based on the above described
algorithm is easy to program and allows different
structures with no limit to degrees of freedom to be
examined with slight or even without any
modification of the main program. The algorithm as
well as the program realization is verified by using
numerical simulation with Autodesk Inventor
simulation package and 3D geometrical model of
the prototype shown in Figure 2.

References
1. Uicker, J.J. (1965) On the Dynamic Analysis of Spatial

Linkages Using 4x4 Matrices. Ph. D. Thesis, Northwestern
University, Evanston

2. Uicker, J.J. (1967) Dynamic Force Analysis of Spatial
Linkages. ASME Journal of Applied Mechanics, ISSN:
0021-8936Vol. 34, p 418-424

3. Kahn, M.E. (1969) The Near-Minimum-Time Control of
Open-Loop Articulated Kinematic Chains. Stanford
Artificial Intelligence Project Memo AIM-106

4. Hollerbach, J.M. (1980) A Recursive Lagrangian
Formulation of Manipulator Dynamics and a Comparative
Study of Dynamics Formulation Complexity. IEEE
Systems, Man and Cybernetics, ISSN: 1094-6977, Vol. 10,
issue 11

5. Armstrong, W.W. (1979) Recursive Solution to the
Equations of Motion of an N-Link Manipulator. Proc. 5th
World Congress on Theory of Machines and Mechanisms,
Vol. 2, p. 1343-1346, New York, US

6. Li, C.-J., Sankar, T.S. (1992) Fast Inverse Dynamics
Computation in Real-time Robot Control. Mechanism and
Machine Theory, ISSN: 0094-114X, No. 27, p. 741-750

7. Li, C.-J., (1989) A New Lagrangian Formulation of
Dynamics of Robot Manipulators. ASME Journal Dynamic,
Systems, Measurement, and Control, ISSN: 1528-9028,
Vol. 111, p. 559-567

8. Luh, J.Y.S., Walker, M.W., Paul, R.P.C. (1980) On-Line
Computational Scheme for Mechanical Manipulators.
ASME, Journal Dynamic Systems, Measurement &
Control, ISSN: 1528-9028, Vol. 102, No. 2, p. 69-76

9. Fisette, P., Postiau, T., Sass, L., Samin, J.C. (2002) Fully
Symbolic Generation of Complex Multibody Models.
Mechanics of Structures and Machines, ISSN: 0890-5452,
Vol. 30, p. 31-82

10. Featherstone, R. (1983) The Calculation of Robot Dynamics
using Articulated-Body Inertias. International Journal of
Robotics Research, ISSN: 0278-3649, Vol. 2, No. 1,
p. 13-30

11. Featherstone, R. (1987) Rigid Body Dynamics Algorithms.
Springer, ISBN-13: 978-0387743141

12. Silver, W.M. (1982) On the Equivalence of Lagrangian and
Newton-Euler Dynamics for Manipulators. International
Journal of Robotics Research, ISSN: 0278-3649, Vol. 2,
p. 118-128

13. Angeles, J., Ma, O. (1988) Dynamic Simulation of n-Axis
Serial Robotic Manipulators Using a Natural Orthogonal
Complement. International Journal of Robotics Research,
ISSN: 0278-3649, Vol. 7, No. 5, p. 32-47

14. Angeles, Jorge. (2007) Fundamentals of Robotic
Mechanical Systems. Theory, Methods, and Algorithms.
Third Edition, Springer Science+Business Media, ISBN-13:
978-0387 29412-4

15. Denavit, J., Hartenberg, R.S. (1955) A Kinematic Notation
for Lower-pair Mechanisms Based on Matrices. ASME
Journal of Applied Mechanics, ISSN 0021-8936, Vol. 22,
p. 215-221

16. Craig, J.J. (2005) Introduction to Robotics: Mechanics and
Control. 3rd Edition, Prentice Hall, ISBN-13: 978-
0201543612

17. Vukobratovic, M., Potkonjak, V. (1982) Dynamics of
Manipulation Robots. Theory and Application. Scientific
Fundamentals of robotics, tome 1, Springer-Verlag, ISBN
978-6-3-540-11628-6, Berlin, Germany

Received in June 2013

