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A GENERALIZED NEWTON-EULER ALGORITHM FOR DYNAMIC 
SIMULATION OF ROBOT-MANIPULATORS WITH REVOLUTE JOINTS 
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Abstract. This article describes a procedure used to compose a set of second order differential equations in order to 
simulate dynamics of a multi-body manipulator's arm with revolution joints. The procedure is based on d'Alambert's 
principle and Newton-Euler equations, and considers each of the manipulator’s links as in equilibrium under a multitude 
of inertial, gravitational and driving forces in the process of its spatial motion. The method is straightforward and is 
based on the repeatability of mathematical operations. The derived set of differential equation are easy to program and 
could be integrated using standard routines. They also can be used to solve forward, as well as reverse dynamic 
problems. The algorithm is verified by comparative studies using well known simulation packages as well as 
experimental data. It can be very successfully applied on the stage of design when not all dynamic parameters of the 
new device are sufficiently known. 
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1. Introduction 

Robot manipulators are complex mechanisms, 
and their dynamic modeling is always a delicate 
matter, usually serving two main purposes. First: to 
investigate the behavior of the mechanical system 
under the influence of a multitude of different 
forces (including the driving ones) applied to the 
links, and second: to help develop control 
algorithms for desired motion of the robot arm 
through space. There are two basic problems 
associated with dynamics of robotic mechanical 
systems, which are solved in order to serve the 
above mentioned purposes – the forward and the 
inverse problems.  

Simply stated, the solving the forward problem 
means to derive time-depended functions for the 
joint variables given the driving force vector, 
gravitational and other forces acting upon the links. 
In the inverse problem, a time-history of either the 
Cartesian or the joint coordinates is given, and 
based on these histories, architecture and inertial 
parameters of the system, torque or force 
requirements at the different actuated joints are 
computed. The latter is essential for the computed-
torque control of robotic manipulators, while the 
former is required for the simulation as well as for 
the real-time feedback control. 

The study of the multiple rigid bodies systems 
dynamics is a classical task and has long-standing 
history. During a period of more than thirty years 
considerable research has been done, leading to an 
abundance of theoretical approaches based on 
different methods - D’Alambert’s principle and 
Newton-Euler equations, Euler-Lagrange equations, 
etc. The application of computers has been a major 
break-through as it allows numerical solutions of 

highly non-linear problems and thus much more 
precise formulation of the dynamic simulation tasks 
for large number of articulated bodies.  

Among the pioneers in this field Uicker [1, 2] 
and then Kahn [3] produced a method based on the 
Euler-Lagrange equations of rigid bodies 
mechanical systems, which method is used to 
simulate the dynamical behavior of such systems. 
Hollerbach [4] developed efficient Lagrangian 
formulation based on the recurrence relations for 
the velocities, accelerations, and generalized forces. 
Later, Armstrong [5] elaborated an recursive O(N) 
algorithm for mechanisms including such with 
spherical joints. Further on Li [6, 7] proposed a new 
Lagrangian formulation of dynamics for 
manipulators which results in well structured form 
equations of motion, making it possible to realize 
the computation of the robot manipulators dynamics 
in real-time on a micro/mini-computer. 

Early researchers developing inverse dynamics 
algorithms for robotics used a Newton-Euler 
formulation of the problem. Further on Luh, 
Walker, and Paul [8] developed a very efficient 
recursive algorithm (RNEA) that is applicable to 
systems with serial kinematic chains. Fiesette at al. 
[9] offered a fully symbolic generation of 
multi-body models to deal with forward and reverse 
problems for open and closed loop kinematic chains 
and large number of bodies. 

One of the most popular and cited constraint 
based dynamics algorithms in use today is known as 
the Featherstone algorithm. Originally developed 
for use in robotics simulations, the algorithm has 
become quite popular in physical simulations as it is 
capable of simulating the motion of articulated 
bodies in O(N) time, when the computation required 



RECENT, Vol. 14, no. 2(38), July, 2013 

100 

scales linearly with the number of links in the 
articulated body. Featherstone [10, 11] realized that 
the efficiency of the simulation procedures was 
directly related to the efficiency of computing the 
joint space inertia (mass) matrix. He used efficient 
transformations and link coordinates to reduce the 
computation of the inertia matrix by about 30 %. 

Today, the problems of robots dynamics are 
subject of many books and monographs utilizing 
different approaches while solving different 
problems. Looking through the multitude of 
publications one can easily recognizes several 
principles, observations and directions of research:  
o Formulations based on Newton-Euler or Euler-

Lagrange principles are equal when applied to the 
multibody dynamic simulation problems. It was 
first done by Silver [12] who showed how to 
derive the Euler-Lagrange equation out of 
Newton-Euler equations; 

o The reverse dynamic problem is solved primarily 
using recursive Newton-Euler formulation [11, 
13, 14].  

o The forwards problem is generally dealt by 
integration of a set of second order differential 
equations derived by means usually of Euler-
Lagrange equations.  

o Considerable effort is made in order to optimize 
and reduce the number of computations (additions 
and multiplications) in order to work out optimum 
algorithms, which lead to a variety of approaches 
and interpretations. This is closely connected with 
the necessities of real-time robots control. 

In any case, deriving the set of differential 
equations solving the forward problem for the needs 
of simulation is tedious process prone to errors, and 
its complexity increases sharply with the number of 
degrees of freedom, while on many occasions the 
algorithms remains confusing and difficult to 
implement for many who are not specialists in the 
area. On the other hand, using two different 
approaches to solve the forward and reverse 
dynamic problems requires additional efforts and 
programming, which not always is quite convenient.  

The aim of this article is to present a 
straightforward, engineering approach to the 
problem of dynamic simulation of articulated arms 
using Newton-Euler equation and D'Alambert's 
principle. It is based on the repeatability of 
mathematical actions and presumes that all the 
terms at the right side of the derived set of 
differential equations should be numerically 
obtained given some initial values. This solution is 
easy to compose, and is intended to solve the 

forward as well as the reverse problems of 
manipulator's dynamics for the purpose of 
simulation. The algorithm is easy to realize in any 
mathematical package environment or other means 
of programming, just following the derived 
equations. 

 
2. Method  

In this article an open-link kinematic chain 
consisting of n links connected by revolute joints 
with one degree of freedom each is considered. The 
links are numbered, starting from unmovable base, 
and local frames with the same number are attached 
to each link according to the classical Denavit-
Hartenberg notation [15]. In this case, for every two 

adjacent links, a 4×4 transformation matrix 1j
j T + is 

used to map positional vectors defined in {j+1}-th 
frame in respect to the frame {j}, or: 
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The links are set in motion via actuators which 
exert a time or position dependent vector torque  
τj(t) = [0  0  τj]

T at each joint. 
In order to derive the generalized Newton-

Euler algorithm each link j is regarded as in static 
equilibrium, at any moment of its spatial motion, 
under a set of all forces and moments acting on it 
(inertial, gravity, as well as actuator torque). Here 
should be added all the forces and moments 
"propagated" to the link under consideration from 
“outboard” arms, those with greater successive 
numbers (j < i ≤ n) as shown in Figure 1. These 
links can be then considered as a rigid system 
taking into account the fact that they are in the same 
state of static equilibrium, and all components of 
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the force and moment vectors are resisted by the 
structure of the manipulator itself, as well as by the 
actuator torques at the joints. 

Summing all the moments at the origin of the 
{ j}-th frame (according to D’Alambert’s principle) 
leads to the following equation: 
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where:  
NΦj - a moment of the inertial force acting on the 

link at the centre of gravity due to the linear 
acceleration of the link; 

Nj - an inertial torque acting on the link due to the 
angular acceleration; 

NGj - a moment of the gravity force (the weight of 
the link) acting at the mass centre; 

jNΦI, 
jNi, 

jNGi - moments of inertial force, inertial 
torque, and moment of the gravity force; acting 
on link i and expressed in terms of frame {j}  
(j < i ≤ n); 

jNQ - an external moment (of torque(s) or force(s)) 
acting upon the end effector (n-th link) during 
the robot function and expressed in respect to 
frame {j};  

ττττj(t) - (usually time or position dependent) joint 
torque exerted by the actuator at the joint j. 

 
Figure 1. Local frames and forces acting on links  

 
In order to find the inertial force and torque 

acting at the centre of gravity of each link, Newton-
Euler equations are applied [14, 16]: 

Cjjj .  vΦ &m= ; jjjjjj .  .  ωωωN II ×+= & , (4) 

which allows equation (3) to be rewritten in the 
form: 
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In the above formulas: 

Cjv&  - linear acceleration of the mass centre of link j; 

jω , jω&  - angular velocity and accelerations of 

frame {j} expressed in respect to the same 
frame; 

jm , jI  - are the mass as well as the symmetric 

inertia tensor of link j written in respect to a 

frame which origin is located at the centre of 
mass and has the same orientation as link frame 
{ j}; 

Ci
j P - position of the mass centre of link i expressed 

in terms of {j}-th frame; 

i
j R - rotational matrix describing the orientation of 

frame {i} in respect to the frame {j}; 
The gravity force, acting on each link, is 

considered as described easily in some basic, 
unmovable frame {0}. Assuming the ẑ  coordinate 
of such a frame pointing vertically up, which often 
is the usual case, the gravity vector-force could be 
designated as: Gj = [0  0  –mj⋅g]T where g is the 
earth acceleration. 

Further on, expressions to calculate linear and 
angular velocities and accelerations of each link 
must be derived. Taking the advantage of 
manipulator structure as a chain of bodies, each one 
capable of motion relative to its neighbors, 
computing the velocities and accelerations jω , jω& , 

jv  and jv& of each link is done starting from the 
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base [16]. Or for a chain with revolute joints the 
following recursive dependences could be written: 
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Here position, velocity and acceleration at joint 

j: jθ , jθ
& and jθ

&& represent 3×1 column vectors as 

shown by (2).  
Initiating from the frame {0} which has 

velocities and accelerations equal to zero, and 
substituting jv& , Cjv& , jω  and jω& in formulas (6), for 

each link the equations given bellow are valid: 
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As it is clear from (7), the aim is to separate the 
members of (5) which do not contain angular 
accelerations at joins. For j > 1 those members are 
given as: 
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Next step is to derive the set of second order 
differential equations in the form similar first to 
that, proposed by Vukobratovic and Potkonjak [17]: 
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which can be easily integrated. Substituting (7) and 
(8) in (5), getting across to the left side of the 

equation all the members containing jθ
&& , and 
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due to the skew-symmetric property of the vector 
product, for the link number j the equation of the 
equilibrium will be: 
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Further on, the vector preproduct tensor is used 
in order to replace the vector product in the 
equation (8) with matrix multiplication. Utilizing 
the 3×3 skew-symmetric matrix form of the vectors 
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k
i V  is computed likewise. 
Taking into account (11), the state of 

equilibrium for link j is finally described by the 
equation (12):  
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As it was said above, when consider kinematic 
chains with joints having single degree of freedom, 

any motion should be possible only along the ẑ axis 
of the respective joint coordinate system, and all 
velocities, accelerations as well as joint torques 
should have the form (2). Thus, the set of second 
order ordinary differential equations (9) is formed 
by taking the dot products of (12) and the unit 
vector jẑ  for each link (1 ≤ j ≤ n). These equations 

finally describe the motion of the system under the 
own weights of the links, forces applied to the end 
effector as well as the vector of joint driving torques 
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ττττ. Note, that one can also add to the right side of 
equation (12) any other conceivable, known, 
external forces acting upon links. 

Equation in the form (6) is considered as 
initial-value problem and is easy to integrate 
utilizing Runge-Kutta or Kutta-Merson methods 
and standard routines, as it could be written in the 
form: 

)](),(H)().[(M  -1
θGθθτθθ +−= &&& t . (13) 

Equation (13) could be easily solved for ττττ(t) 
given the time histories of positions, velocities and 
acceleration computed via some trajectory planning 
algorithm in joint or Cartesian space. This is 
straightforward way to obtain the necessary driving 
torques in joints and thus to solve the reverse 
problem.  

 
3. Numerical example  

In order to illustrate end test the algorithm, an 
experimental, heavy duty hydraulically driven, five 
DoF manipulator is considered. The 3D CAD model 
of the manipulator is shown in Figure 2. The 
manipulator is intended for moving loads along 
certain trajectory in space. A load of 3200 N is 
attached to the last link. 

 

 
Figure 2. 3D CAD model of hydraulically driven 

manipulator 
 
Solving the inverse problem. The trajectories in 

joint space are generated, using third order 
polynomials, for three trajectory points – start, 
middle and end, while the manipulator does not stop 
at the middle point. The trajectory points are 
specified by the coordinates of the load mass center 
and its orientation – rotation about the vertical axis 
(must be pointed out that the load is horizontal at 
any time). This allows solving the inverse kinematic 
problem for five DoF). The time history of 
positions, velocity and accelerations for each joint 

( jjj  ,  , θθθ &&& ) are shown in Figure 3. 

 

 
Figure 3. Time histories of positions, velocity and 

accelerations for five DoF manipulator 
 
The solution of the equation (13) for ττττ(t) is 

done by programming using the Matlab 
mathematical package. The result for the joints 2 to 
4 (rotation about parallel horizontal axes) is shown 
in Figure 4. 

The forward problem. To illustrate the above 
ratiocination, let consider revolving joints driven by 
hydraulic actuators. 

Let assume that the pistons move with constant 
speed, while at a certain moment of time occurs 
sudden closure of the hydraulic valves. Further 
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movement of the arms will be possible due to the 
compression of the working fluid as well as flexible 
pipes, presenting the driving torque as position 
dependent function. The process is a considerably 
complex one to be presented here in details, but it 
could be shown that the actual forces, velocities, 
elasticity and damping in the actuators can be 
transferred to the joint variables giving the law of 
the driving torques in the form: 

jjj0jjj dk θ⋅−θ−θ⋅=τ &)( , (14) 

where kj is the elastic stiffness, dj - damping factor, 
both transferred to the revolute joint, and θj0 
represents the free position (a position with zero 
elastic torque).  

 

 
Figure 4. Computed necessary driving torques for joints 

2 to 4 
 
 

Substituting (14) in (12) and supplying the 
proper values for elasticity, damping and free 
position, as well as the initial values for positions 
and velocities for each joint, a set based on equation  
(12) for each link is integrated using standard 
routine. Results of such integration in the form of 
oscillations about the initial position of each joint 
are shown in Figure 5. The integration is done as 
initial value problem utilizing Matlab package with 
ODE23 solver.  

 
4. Discussion and conclusion 

In many cases, especially on the stage of 
design, often arises the need to simulate dynamic 
behavior of still not completely known product. On 
some occasions it is the need to determine the 
magnitude of the dynamic forces in large variety of 
operational conditions. Such dynamics forces with 
high capacity, fast moving manipulator arms could 
be considerable and must be taken into account 
when considering the structural integrity of the 
design. On the other hand, dynamic simulation 
could be required in order to create suitable control 
algorithms or to select the right driving system and 
actuators – electric drives, hydraulic actuators, etc. 
In general, all that tasks could be solved using some 
of the proposed algorithms and methods outlined in 
section one, but many of them are strictly 
specialized (mainly serving the purposes of real–
time numerical control) and have to be modified in 
order to serve some design purposes. 

 
Figure 5. Oscillation about the initial positions 

 
The algorithm proposed in this article uses an 

engineering approach to the problems of dynamic 
simulation of multibody systems forming an open-
loop kinematic chain with revolute joints. Such 
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designs form the majority of the equipment in use – 
industrial robots or outdoor materials handling 
equipment. This approach is based on Newton-
Euler equations and state of equilibrium of each 
body during its spatial motion. It could be used to 
easily compose a set of second order differential 
equation describing the dynamic behavior, given 
particular time dependent or position dependent 
functions of driving torques in joints. Such set of 
differential equations should be integrated by 
standard routines. The advantage of the proposed 
method is that the set of equations can easily be 
written following the described rules and derived 
formulas, simply adding new members with the 
number of bodies increasing. Although such an 
algorithm is not very effective from order of growth 
point of view - close to O(N2), it could quite well be 
implemented for vast majority of cases when fast 
response is not necessary (one example is to use the 
results presented in Figure 4 for optimal design of 
the driving system). 

The same sets of differential equations are to be 
used in order to solve reverse dynamic problem. 
Here however, all the equations are derived in 
closed form which leads to the direct computation 
of necessary joint torques. The closed form of the 
equations also permits a piecewise solution – each 
torque is computed without regard to the others. 

A procedure based on the above described 
algorithm is easy to program and allows different 
structures with no limit to degrees of freedom to be 
examined with slight or even without any 
modification of the main program. The algorithm as 
well as the program realization is verified by using 
numerical simulation with Autodesk Inventor 
simulation package and 3D geometrical model of 
the prototype shown in Figure 2. 
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