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ABOUT THE INDEPENDENT SETS OF PERIODICALLY 
MESHING TEETH IN GEAR DRIVES 

PART I 
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Abstract. This article provides a detailed study in regard to the independent sets of teeth of engaged gear wheels that 
periodically come into mesh during the operation of a gear drive. Taken into consideration is the importance of a proper 
choice of the teeth number of gear wheels, and a methodology for calculating the teeth number in power gear drives in 
terms of optimal operation is proposed. Further the paper discusses the influence of independent sets of meshing teeth 
on the strength and performance parameters of gear drives. 
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1. Introduction 

On of the key factors that affect the 
performance characteristics of gear drives that form 
part of power trains is the optimal choice of teeth 
number of the engaged gear wheels [13, 16]. 
Reducing the number of teeth of engaged wheels 
leads to smaller and lighter gear drives, which is of 
importance for the overall space consumption and 
cost of the power train. An unfavourable effect of 
reducing the teeth number, particularly when it 
comes to gear drives with straight teeth (Figure 8), 
is the increase of specific sliding [7]. In this case 
intense friction is observed, especially in those 
points of the active teeth surface that are most 
distant from the pitch point – the roots and the tips 
of the teeth (Figure 5), which is a prerequisite for 
accelerated wear and heavier warming [1, 3, 7, 13]. 
Another disadvantage of reducing the teeth number 
is the subsequent diminishing of the transverse 

contact ratio εα, which leads to a smaller load 
capacity and less smooth operation of the gear drive 
[1, 3]. The above facts will be illustrated with a 
practical example of a cylindrical spur gear drive 
from the construction of a real industrial 
installation. The gear drive has been computer 
calculated with the specialized in the area of 
machine elements software system MITCalc 
(Figures 1÷7) after which the construction design 
has been optimized in the CAD environment of 
Autodesk Inventor (Figure 8) [5, 9] with regard to 
the following: 
- predefined power and kinematics parameters – 

Figure 1; 
- selected calculation standard, pinion and gear 

material, dimensions and further operational and 
production parameters – Figure 2; 

- type and geometry of the standardized gear cutter 
tool – Figure 3;  

 

 
Figure 1. Basic parameters for software calculation of a gear drive 

 

 
Figure 2. Standard, operational and production parameters of the gear drive 
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Figure 3. Parameters of the gear cutter tool 

 

 
Figure 4. Geometric and strength parameters of the gear drive 

 
- determined permissible geometric and strength 

parameters – Figure 4; 
- automatically calculated quality characteristics for 

the entered addendum modification coefficients 
(x1, x2 and Σx), from which is seen (Figure 5) 
that the specific sliding (ϑ) is biggest at the roots 
of the teeth (point 5.10 of the software 
algorithm) and at the tips of the teeth of the two 
engaged wheels (point 5.11 of the software 
algorithm); 

- calculated geometry (Figure 6) and load capacity 

of the gear drive (Figure 7). 
The negative effect of the drawbacks associated 

with reducing the teeth number in gear drives can 
be shrink down by achieving an optimal 
combination between wheel materials, applied 
thermal treatment, selected addendum modification 
coefficients (x1; x2; Σx - points 5.6 and 5.7 on Figure 
5), high production accuracy and quality of the teeth 
surface and last but not least the number of 
independent sets of meshing teeth of the engaged 
wheels.  
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Figure 5. Quality characteristics of the gear drive 

 

 
Figure 6. Basic geometry of the gear drive 

 
These measures themselves are once again 

relied to efficiency and cost, therefore an overall 
view on the problem reveals a closed loop in which 
the mechanical design engineer and the production 
technology engineer are expected to reach an 
optimal solution regarding the performance of the 
gear drive. Regarding the concept of independent 
sets of meshing teeth it should be noted that 
whenever applicable they are supposed to be 
arranged in such a way, that each tooth of the small 

(driving) wheel periodically contacts as many teeth 
of the large (driven) wheel as possible, since this 
leads to a significant decrease of the influence of 
tooth geometry errors on wear, vibration, noise and 
smoothness of operation of the gear drive, which is 
of crucial importance for its performance capacity. 

 

 
Figure 7. Strength parameters of the gear drive 

 

 
a 
 

 
b 

Figure 8. Cylindrical spur gear drive  
z1 = 17; z2 = 31; m = 4 mm 

а) external engagement; b) internal engagement 
 
Strength calculation and geometry definition of 

cylindrical gear drives is based on the requirement 
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for sufficient contact stress safety of the tooth 
profiles. Preliminary determination of the number 
of teeth (z1) of the small and the number of teeth (z2) 
of the large wheel can be done in various ways – 
through general recommendations formed on 
previous experience, reference materials, industrial 
and information catalogues, specialized software 
CAD systems, as well as via certain methodologies 
[1, 5, 6, 8, 9]. Below is presented a short algorithm, 
consisting of four steps, which can be used to 
calculate a cylindrical spur gear drive [3, 4]: 

 
1) Calculation of the pitch diameter of the 

small wheel (it is assumed the small wheel is the 
driving one): 
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where: fH - generalized coefficient for preliminary 
calculation of gear drives; T1 - torque transmitted 
from the input (driving) shaft of the small wheel (z1) 
(in the software calculated example the torque is 
designated with Mk - Figure 1); 

1bdψ  - the ratio of 

the small wheel width to its diameter; σHP - 
permissible contact stress; u - transmission number; 
KH - generalized coefficient of gear drive load. 

 
2) Calculation of the normal module of the 

wheels of the gear drive: 
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where: bw - working face width; ψm - coefficient 
depending on the type and load of the gear drive. 

 
3) Determination of the teeth number of the 

small wheel: 

m

d
z

β⋅= cos1
1 , (3) 

where: β - teeth slope angle in respect to the 
geometric axis of the wheel. 

The minimum allowable number of teeth zmin of 
gear wheels is limited by the requirements for 
preventing undercutting at the root and tapering at 
the tip of the teeth, for known manufacturing 
technology and cutter tool parameters. In case the 
gear wheels are manufactured with a rack-type 
cutter tool the minimum allowable number of teeth 
is determined by [2]: 
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where: *
lh  - limiting height coefficient (the height 

of the straight-line portion - Figure 5) of the cutter 
tool profile; *

ah  - addendum height coefficient; 

2

sin2
**

min
α⋅−−= z

hhx al  (5) 

is the minimum shift coefficient, determined by the 
requirement for preventing undercutting of the 
teeth; α - pressure angle of the cutter tool profile, 
which is coincident with the pressure angle of the 
gear wheel teeth, when measured on the pitch 
diameter (Figures 3, 4 and 6). 

 
4) Determination of the teeth number of the 

large (driven) wheel: 

2 1.=z z u (6) 

The gear drive is a three-link mechanism and as 
such the transmission ratio can be expressed from 
the kinematics relation between the mobile links 
(the gear wheels z1 and z2): 
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where: ω1 and ω2 are the angular velocities; n1 and 
n2 - the revolutions per minute; V1 and V2 - the 
peripheral velocities of the wheels (Figures 7 and 8). 

When determining the transmission ratio the 
rotation direction of the wheels has to be taken into 
account. In the case of unidirectional rotation 
(corresponding to internally engaged gear drives) - 
Figure 8b, the angular velocities of both wheels 
have the same mathematical sign: 

1
2

1 >
ω
ω=i , (8) 

on the other side with contra directional rotation 
(corresponding to externally engaged gear drives) - 
Figure 8а, the angular velocities have opposite 
mathematical signs: 

1
2
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The transmission number (u) is a ratio of 
geometric parameters of the gear drive and is 
therefore always positive: 
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where: d1 and d2 are the pitch diameters; z1 and z2 
are the teeth numbers of the engaged wheels 
(Figures 4, 6 and 8). 
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The relation between the peripheral velocity V 
and the angular velocity ω of the engaged wheels in 
the gear drive is expressed as: 

2,12,12,1 ndV ⋅⋅π= , (11) 

where: d1,2 = m⋅z1,2 - pitch diameters; n1,2 = 30⋅ω1,2/π 
- revolutions per minute. 

After substitution of (11) in (7), the following 
formula for the transmission ratio is resulted [2]: 
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From the above expressions (7÷12) it can be 
concluded, that the absolute value of the 
transmission ratio equals the transmission number: 
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The proper choice of the teeth numbers of the 
gear wheels z1 and z2 is directly linked to the 
number of independent sets of meshing teeth in the 
particular gear drive. This choice is also one of the 
main prerequisites for designing gear drives with 
optimal properties regarding load capacity, 
longevity, wear, heating, noise and vibration [10]. 

The concept of independent sets of meshing 
teeth is known in the literature, but the latter lacks 
fundamental explanations and detailed information 
about its essence, application and significance [3, 4, 
10÷18]. As a result in the design process of gear 
drives this important principle is often neglected or 
underestimated. 

 

The aim of the present article is: To clarify 
the significance of the problem regarding the proper 
application of the concept of independent sets of 
meshing teeth in engaged gear wheels, as well as to 
elaborate the problem in detail and designate its 
effect on strength and performance parameters of 
gear drives during their operation. 

 
2. Exposure 
2.1. Independent sets of meshing teeth in gear 

drives 
According to [18] the essence of independent 

sets of meshing teeth in gear drives can be 
presented in the following way: 

For a cylindrical gear drive, calculated using 
equations (1, 2, 3 and 6), the values below have 
been obtained: 
- z1 = 9 - number of teeth for the small wheel; 
- z2 = 15 - number of teeth for the large wheel; 
- u = 1.67 ≈ 1.7 - transmission number of the gear 

drive. 
Each tooth of both wheels has been assigned a 

certain number (Figure 9). In the starting position of 
the gear drive, denoted with n1 = 0, tooth №1 of the 
small wheel (marked in blue) is in contact with 
tooth №1 of the large wheel (marked in red). When 
the gear drive is set in motion in the specified 
direction, after each full revolution of the small 
wheel n1, it is tracked which tooth of the large 
wheel will contact tooth №1 of the small wheel. 

 
 

 
     n1 = 0                       n1 = 1                        n1 = 2                        n1 = 3                       n1 = 4                        n1 = 5 

Figure 9. Teeth meshing sequence for a cylindrical spur gear drive with z1 = 9 and z2 = 15  
at every full revolution of the small wheel 

 
After the first revolution meshing occurs 

between tooth №1 and tooth №10, after the second 
– between №1 and №4, after the third – between 
№1 and №13, after the fourth – between №1 and 
№7. After the fifth revolution tooth №1 of the small 
wheel once again contacts tooth №1 of the large 
wheel, which corresponds to the starting position of 
the gear drive. If we continue rotating the wheels of 

the gear drive, the meshing cycle will repeat in the 
same manner. The stated above demonstrates that 
when the gear drive is in operation tooth №1 of the 
small wheel will periodically mesh with teeth №1, 
№4, №7, №10 and №13 of the large wheel but will 
never contact any of the other 10 teeth. Tracking the 
contact sequence for the rest of the teeth of the 
small wheel (from №2 to №9) with the teeth of the 
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large wheel reveals a certain relation, which is 
presented in Table 1. The letters A, B and C designate 
the independent sets of meshing teeth. When the 
gears are driven a tooth from one set never comes in 
contact with a tooth from another set. 

 
Table 1. Independent sets of meshing teeth 

 Teeth of the  
small wheel № 

Teeth of the  
large wheel № 

A 1 – 7 – 4 1 – 10 – 4 – 13 – 7 
B 2 – 8 – 5 2 – 11 – 5 – 14 – 8 
C 3 – 9 – 6 3 – 12 – 6 – 15 – 9 

 
2.2. Calculating the number of independent sets 

of meshing teeth in the gear drive 
The number of independent sets of meshing 

teeth in a gear drive is designated with NA. In the 
example above NA = 3. In mathematical form the 
factor NA is equal to the greatest common divisor of 
z1 and z2 [4].  

In the algorithm for determining NA that is 
presented below the abbreviation GCD (Greatest 
Common Divisor) is used; it is worth mentioning 
that other abbreviations such as GCF (Greatest 
Common Factor) and HCF (Highest Common 
Factor) are equal in meaning and are often found in 
literature: 

( ) ( )2121 ,, zzGCDzzNA = . (14) 

The fastest way to find the GCD of two 
numbers a and b is to use the Euclidean algorithm. 
This algorithm is iterative, i.e. the solution is 
reached after N steps [17]. First of all two positive 
variables rn–1 and rn–2 need to be defined, with the 
condition that: 

21 −− ≤ nn rr . (15) 

The initial values (i.e. by n = 0) of these 
variables are namely the numbers a and b for which 
the GCD is to be calculated: 

brar == −− 21 ; . (16) 

The aim of the algorithm is to increment n  
(n = 0; 1; 2; …) and on every step to find an integer 
coefficient qn, which when solving equation (17): 

nnnn rqrr +⋅= −− 12  (17) 

allows fulfilling the inequality: 

1−< nn rr . (18) 

After a certain number of repetitions n = N, the 
remainder rn equals zero: 

0=Nr , (19) 

at which point the algorithm is stopped. 

It can be proven that GCD(a,b) is equal to the 
last remainder that was not zero: 

( ) 0, 1 ≠= −NrbaGCD . (20) 

Example: for a = 9 and b = 15 the Euclidean 
algorithm is expressed by the following series of 
equations: 

(n = 0)   15 = 9⋅1 + 6; 

(n = 1)    9 = 6⋅1 + 3; 

(n = 2)    6 = 3⋅2 + 0; 

⇒ NA = 3, 

(21) 

which confirms the empirical result for AN  for the 
discussed gear drive. 

The Euclidean algorithm can easily be 
implemented in all programming languages in order 
to use it in custom software solutions for gear drive 
design or to modify existing software products 
serving this purpose. An example for such a product 
is MITCalc, specialized in machine elements and 
mechanical transmissions calculations [5, 9]. One of 
the possible options for software implementation of 
the Euclidean algorithm is to use the mod (%) 
operator, which returns the remainder from the 
division of two numbers: 

12 mod −−= nnn rrr . (22) 

The example below demonstrates one possible 
solution for an algorithmic function that finds the 
GCD of two numbers, implemented in C 
programming language: 
 

int GCD(int a,int b) 
{ 
int temp; 
while (b!=0) 
{ 

temp=b; 
b=a%b; 
a=temp; 

  } 
  return(a); 

}. 
 

Freeware ready-made solutions for finding the 
GCD are accessible on the web, many of them are 
to be found under the form of a Java Applet [19]. 

In some literature sources the NA factor is 
defined as the product of simple multipliers that are 
common to the number of teeth of both gear wheels 
z1 and z2 [18]: 

z1 = 9 = 3 × 3; 

z2 = 15 = 3 × 5; 

⇒ NA = 3. 

(23) 
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This approach for finding the GCD involves 
the decomposition of z1 and z2 and is more complex 
than the Euclidean algorithm, especially when it 
comes to its implementation in software code. 

 
3. Conclusion 

The knowledge and proper application of the 
concept of independent sets of meshing teeth in the 
design stage of the gear drive eliminates the risk of 
later occurrence of various issues, resolving which 
would at the very least demand significant financial 
resources. Achieving NA = 1 only requires a modest 
change in the value of the requested transmission 
number of the gear drive, which does not imply 
labour-intensive and complex calculations, 
deterioration of performance and quality, increase 
of manufacturing cost, etc. 

The principle is applicable for cylindrical, 
bevel, hypoid and worm (z1 equals the number of 
threads of the worm) drives, regardless of the slope 
angle of the teeth [11]. 

Providing a factor NA = 1 is the proper approach 
when designing power gear drives irrespective of 
load scale, as well as in the case of responsible gear 
drives, which require special attention when the 
following events are probable: 

- damage of the gear drive may lead to stop of 
the production process or endanger the safety of the 
personnel; 

- the level of noise and vibration of the gear 
drive affect the production process; 

- heavy duty operation; 
- operation in highly contaminated environment; 
- lack of regular inspection. 
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