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Abstract 
The paper presents and emphasizes the behaviour of different goodness-of-fit tests, towards the acceptance of 
the normality hypothesis. The goodness of fit tests considered are general goodness-of-fit tests - Kolmogorov-
Smirnov, Cramer-von-Mises, Anderson-Darling, and normality goodness-of-fit tests - Lilliefors, Shapiro-Wilk, 
D'Agostino, Massey, Filliben, Z, Cox. These goodness-of-fit tests are conducted on normally distributed data in 
order to test the normality of the data. The need for testing the normality of the data appears especially in 
metrology, for the analysis of the metrological reliability. General metrology uses especially the normal 
distribution, despite the fact that positive and asymmetrical distributions (e.g. Weibull distribution) are 
frequently met in the analysis of the metrological reliability. In these cases, it is necessary to perform goodness-
of-fit tests in order to ascertain that the normal distribution fits the data. The quality of the results depends on 
the goodness-of-fit test which was chosen to determine if the normal distribution fits the data best. 
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1. Introduction 
Goodness-of-fit tests are essential for the quantitative evaluation of a system reliability and 

maintainability. The most important issue for data analysis is to find the best, or the most appropriate 
distribution which describes the experimental collected data and goodness-of-fit tests are used to test 
whether the selected distribution fits the data. 

Positive and asymmetrical distributions (e.g. Weibull distribution) are met frequently in the 
analysis of the metrological reliability. Despite this fact, metrology uses especially the normal 
distribution and, in these cases, it is necessary to perform goodness-of-fit tests in order to ascertain 
that the normal distribution fits the data [1]. The quality of the results obtained depends on the 
goodness-of-fit test which was chosen to test if the normal distribution fits the data best. 

The present paper aims to present and emphasize the results obtained by conducting different 
goodness-of-fit tests on normally distributed data, in order to test the probability of acceptance of the 
normality hypothesis by the goodness-of-fit tests which were considered: general goodness-of-fit tests 
- Kolmogorov-Smirnov, Cramer-von-Mises, Anderson-Darling, and normality goodness-of-fit tests - 
Lilliefors, Shapiro-Wilk, D'Agostino, Massey, Filliben, Z, Cox. These tests are conducted on normally 
distributed data grouped in samples of different sizes, in order to test the normality of the data. Their 
behaviour towards the considered samples, generated according to the normal distribution function is 
to be studied. The goodness-of-fit tests considered in this research were applied in accordance with 
the speciality literature [1-9]. Although in [7] Cox goodness-of-fit test is considered to be adequate for  
n > 100, it was conducted on small sizes of samples too, in order to analyse its behaviour towards the 
small sizes of samples. The results are presented in this paper. Goodness of fit tests are applied in 
researches [10, 11, 12] in order to test the normality of data. 

The general goodness-of-fit tests were used in their modified form, according to the situation in 
which the parameters of the normal distribution are not known and they need to be estimated by [2, 3]: 
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where xi, i = 1, ... n, are the values in the sample, n is the size of the sample, m is the mean, and  is the 
standard deviation. 

 
2. Case Study: Programmed Generation of Normally Distributed Data 

In this case study, the considered goodness-of-fit tests were performed on normally distributed 
data, data being obtained by programmed generation according to the formulas below [4, 5, 6]: 
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The tests were conducted on samples with different sizes n  {5, 10, 20, 30, 40, 50, 60, 80, 100}, 
each sample being generated according to the equation (3). 

Table 1 and Table 2 present the results of the tests in the case the considered samples are normally 
distributed, being obtained by programmed generation of normally distributed data, the parameters of 
the normal distribution being m = 0 and  = 1. 

 
Table 1. Tests statistics and their critical values 

Sample size (n) 5 10 20 30 40 

General goodness-of-fit tests / decision criteria 

Kolmogorov - Smirnov  
(d  dn, ) 

0.2872 < 
0.895 

0.1989 < 
0.895 

0.1407 < 
0.895 

0.1238 < 
0.895 

0.1075 < 
0.895 

Cramer-von-Mises  
(W2 < W2n, ) 

0.0186 < 
0.126 

0.009 < 
0.126 

0.0045 < 
0.126 

0.0031 < 
0.126 

0.0024 < 
0.126 

Anderson-Darling 
(A2 < A2n, ) 

0.105 < 
0.787 

0.0899 < 
0.787 

0.0521 < 
0.787 

0.037 < 
0.787 

0.029 < 
0.787 

Normality goodness-of-fit tests / decision criteria 

Lilliefors 
(L  Ln, ) 

0.1102 < 
0.337 

0.0581 < 
0.258 

0.0302 < 
0.190 

0.0167 < 
0.161 

0.0167 < 
0.1401 

Shapiro-Wilk (3<n<50)  
(W  W2n, ) 

0.9965> 
0.986 

0.9966 > 
0.978 

0.9972 > 
0.983 

0.9961 > 
0.985 

0.9949 > 
0.987 

D'Agostino (n>50)  
Y (Yn, /2, Yn, 1-/2) 

- - - - - 

Massey (10 <n<30) 
(d  dn, ) 

- 0.0689 < 0.130 
0.0364 < 

0.117 
0.026 < 
0.102 

- 

Filliben 
(rc  rn, ) 

1 > 0.995 1 > 0.99 
0.9999 > 

0.992 
1 > 0.994 1 > 0.995 

Z 
(Z  Zn, ) 

0.0088 < 
1.4047 

0 < 0.8744 0 < 0.6135 0 < 0.5045 0 < 0.4392 

Cox (b1 / b2) 
b1 [-0.05, 0.05] 
b2 [2.95, 3.05] 

0.0074 / 
1.8547 

0 / 2.1855 0 / 2.4314 0 / 2.5391 0 / 2.6089 

 
By analysing the results indicated in Tables 1 and Table 2, the conclusion is that all the considered 

goodness-of-fit tests accept the normal hypothesis of the programmed distribution, except for the Cox 
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goodness-of-fit test for parameter b2.  
Table 2. Tests statistics and their critical values 

Sample size (n) 50 60 80 100 

General goodness-of-fit tests / decision criteria 

Kolmogorov - Smirnov 
(d  dn, ) 

0.0968 < 0.895 0.0952 < 0.895 0.0862 < 0.895 0.0808 < 0.895 

Cramer-von-Mises  
(W2 < W2

n, ) 
0.002 < 0.126 0.0017 < 0.126 0.0013 < 0.126 0.0011 < 0.126 

Anderson-Darling 
(A2 < A2

n, ) 
0.0243 < 0.787 0.021 < 0.787 0.0166 < 0.787 0.0138 < 0.787 

Normality goodness-of-fit tests / decision criteria 

Lilliefors 
(L  Ln, ) 

0.0135 < 0.1253 0.0121 < 0.1144 0.0095 < 0.0991 0.008 < 0.0886 

Shapiro-Wilk (3<n<50) 
(W  W2

n, ) 
0.9935 > 0.988 - - - 

D'Agostino (n>50)  
Y  (Yn, /2, Yn, 1-/2) 

0.4322  
(-2.2, 0.923) 

0.4297  
(-2.179, 0.986) 

0.4036  
(-2.118, 1.076) 

0.3874  
(-2.075, 1.137) 

Massey (10 <n<30) 
(d  dn, ) 

- - - - 

Filliben 
(rc  rn, ) 

1 > 0.996 1 > 0.996 1 > 0.997 1 > 0.998 

Z 
(Z  Zn, ) 

0 < 0.3943 0 < 0.3609 0 < 0.3137 0 < 0.2812 

Cox (b1 / b2) 
b1 [-0.05, 0.05] 
b2 [2.95, 3.05] 

0 / 2.6496 0 / 2.6815 0 / 2.7349 0 / 2.7688 

 
3. Case Study: Random Generation of Normally Distributed Data 

Two methods were used for random generation of normally distributed data. In the first method 
used for random generation of normally distributed data, n uniform random variables Qi, i = 1, ..., n, are 
generated and then, variable t is calculated according to [8]: 
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Random variables having a normal distribution can be generated by [8]: 
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where the error (Q) is given by (10) and the constants are given by (11) [8]:  
 

(Q) < 4.510-4 (10) 
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The second method used for random generation of normally distributed data is the one derived 
from the central limit theorem. According to this method, random variables having a normal 
distribution can be generated by [3]: 
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where Ui, i = 1, ..., n, are uniform random variables. 
The tests have been conducted on samples with different sizes n  {5, 10, 20, 30, 40, 50, 60, 80, 100} 

in each case being considered 2000 samples of each size n. The samples were generated according to the 
equation (9) or (12), respectively, and the considered goodness-of-fit tests were performed on the samples.  

Tables 3 and 4 present the results obtained in case the samples were generated according to both 
equations (9) and (12) - the probability of acceptance, in percentage, of the normality hypothesis by 
the goodness-of-fit tests which were considered. 

The adopted significance level is ad = 0.05. 
 

Table 3. Probability of acceptance of the normality hypothesis 
Sample size (n) 5 10 20 30 40 

Samples generated according to equation (9) / Samples generated according to equation (12) 

General goodness-of-fit tests 

Kolmogorov - Smirnov 95.5/94 95/95 96/91 95.5/95 96/96 
Cramer-von-Mises 95/97 96.5/96 96/93 98/95 94/96 
Anderson-Darling 99/98 95.3/92 93.8/94 95/95 95.4/96 

Normality goodness-of-fit tests 

Lilliefors 97/98 97/96 97/96 97/97 97/97 
Shapiro-Wilk (3<n<50) 5/0 5.1/5 4.5/5 5.9/7 5.4/6 

D'Agostino (n>50) - - - - - 
Massey (10<n<30) - 28/25 54.6/51 60.6/55 - 

Filliben 2.7/0 4.1/1.4 6.4/6 5.4/5 6/6 
Z 92/96 91/95 90/89 91/85 90/87 

Cox (n>100) 0/0.1 0.1/0.1 0.2/0.2 0.5/0.5 0.6/0.6 
 

Table 4. Probability of acceptance of the normality hypothesis  
Sample size (n) 50 60 80 100 

Samples generated according to equation (9)/ Samples generated according to equation (12) 

General goodness-of-fit tests 

Kolmogorov - Smirnov 95.5/93 95/96 95.5/97 96/96 
Cramer-von-Mises 95/92 95/93 96/95 95/93 
Anderson-Darling 98/92 95/95 95/94 95/93 

Normality goodness-of-fit tests 

Lilliefors 97/97 97/97 97/98 97/98 
Shapiro-Wilk (3<n<50) 4.8/4 - - - 

D'Agostino (n>50) 90/93 90/92 90/90 92/91 
Massey (10<n<30) - - - - 

Filliben 3.4/3 7/7 6/7 3/4 
Z 90/97 90/93 93/92 92/92 

Cox (n>100) 0.85 /0.6 0.9/0.7 1.35/1.4 1.75/1.5 
 

4. Conclusions 
The analysis of the results obtained in this research indicates the fact that the probability of 

acceptance of the normality hypothesis in case of applying the normality goodness-of-fit tests is 
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smaller than the probability of acceptance of the normality hypothesis in case of the general goodness-
of-fit tests. 

Another conclusion drawn is that, among the normality goodness-of-fit tests, the smallest values for 
the probability of acceptance of the normality hypothesis are obtained in case the Cox or Filliben 
goodness-of-fit tests are conducted. The greatest values for the probability of acceptance of the 
normality hypothesis are obtained in case of application of Z, D'Agostino and Lilliefors goodness-of-fit 
tests, these values being comparable to those obtained in case general goodness-of-fit tests are 
conducted. 

The results obtained in the research described in the present paper indicate the fact that the 
probability of acceptance of the normality hypothesis by the goodness-of-fit tests increases with the 
size of the sample in most cases. 
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