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Abstract 
The enhancement of aluminium alloys mechanical properties can be achieved through the process of grain 
refinement. Grain size stands out as the primary indicative factor employed in industry to define grain refinement. 
This has led to a growing interest in the creation of precise models for predicting grain size. Methods rooted in 
data-focused informatics are gaining significance in assessing material properties that prove challenging to gauge 
or calculate through conventional means—often due to constraints related to cost, time, or labour. These methods 
leverage existing dependable data or have the potential to generate such data, particularly for essential scenarios. 
In this paper, several models are presented for predicting the average grain size of plate or sheet products made 
from AA5754, specifically in H111 or H22 tempers and with thicknesses ranging from 1 mm to 100 mm. These 
models are developed through regression analysis of empirical data, emphasizing the influence of factors like alloy 
composition, mechanical characteristics, and final product thickness. The findings underscore the efficacy of 
machine learning in constructing a data-oriented predictive model for grain size in AA5754.  
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1. Introduction 
AA5754 is primarily composed of aluminum, with additional elements added to provide specific 

properties and characteristics. Its primary alloying element is magnesium (Mg), which contributes to its 
moderate strength, corrosion resistance, and weldability. It is often used in various applications where 
a combination of these properties is required. 

Considerable attention is directed towards accurately forecasting solidification microstructure, with 
a specific emphasis on average grain size of aluminium alloys [1]. This focus has led to the creation of a 
multitude of predictive models.  

In the last decade, the field of materials science has witnessed a substantial increase of interest and 
progress in the domain of machine learning (ML). Operating on a data-centric basis, ML has the capacity 
to assist individuals in extracting insights from data, forming connections, and rendering informed 
decisions. Furthermore, ML has found utility in tasks such as microstructure analysis, characterization, 
and design within the materials science domain [2 - 6]. 

Several distinct models for predicting grain size have been formulated over time, each customized to 
specific adaptation conditions. These models predominantly fall into three categories: (i) theoretical 
models constructed through physical or mathematical deduction under specific conditions and 
assumptions, (ii) empirical models derived from regression analysis of experimental data, and (iii) Deep 
Learning (DL) models which learn these relationships in a more flexible by processing vast amounts of 
data through layers of interconnected nodes in a neural network [7]. 

Lately, DL approaches have demonstrated superior performance compared to other ML methods in 
the field of materials science [8]. Despite their numerous merits, DL methods also come with 
inconvenience, the most notable being their opaque nature – like a black box, which could restrict a 
comprehensive understanding of the phenomena being studied [9]. Typically, a DL model involves 
thousands to millions of parameters, rendering the interpretation of the model and the direct extraction 
of scientific insights challenging. While a minimum sample size of around 100 is usually required for 
machine learning, DL demands a substantially larger dataset, at least 500 samples [10]. In our specific 
scenario for AA5754, the empirical model was developed using an approximate set of 150 samples. 
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This paper presents multiple predictive models aimed at estimating the average grain size of AA5754 
plates and sheets, in H111 or H22 temper. These models are constructed using regression analysis 
applied to empirical data, placing emphasis on the impact of variables like alloy composition, mechanical 
properties, and the thickness of the final product. The results highlight the effectiveness of machine 
learning in constructing a predictive model grounded in data for estimating average grain size in the 
context of AA5754. 

 

2. Dataset and features 
2.1. Dataset 

There were 153 sets collected from industrial experiments and organized into a dataset for the 
products of AA5754, where each set represents a finished product of plate or sheet type, H111 or H22 
temper, with a thickness between 1 mm and 100 mm.  

Each set of products was obtained following an industrial flow process, starting with the casting of 
slabs by the Direct-Chill process and continuing with the scalping of the slabs. Then, after the preheating 
treatment, each slab was subjected to the hot rolling, reducing its initial thickness of around 500 mm to 
a range between 7 mm or 8 mm, and 100 mm. A part of these product sets was subjected an annealing 
treatment to achieve the H111 temper. Instead, the remaining part of the products was subjected of cold 
rolling to achieve a thickness ranging from 1 mm to 5 mm, followed by a partial annealing treatment to 
attain the H22 temper. Alternatively, some products were subjected an annealing treatment with a 
slightly strain-hardened (less than H11) to achieve the H111 temper. 

The alloying composition features were represented by five elements: Aluminum (Al), Magnesium 
(Mg), Manganese (Mn) and Silicon (Si). Thickness of the final product was chosen as parameter of 
process. Tensile yield strength (TYS), ultimate tensile strength (UTS), and fracture elongation (FE) were 
considered as pivotal features of the mechanical characteristics.  

From a theoretical standpoint, the microstructure of an alloy encompasses a range of elements, 
including the uniformity of grain distribution, grain size, intensity of texture, degree of recrystallization, 
as well as the arrangement, dimensions, and volume of secondary phases. These attributes of 
microstructure ultimately govern the properties of the alloys. To summarize, the average grain size 
resulting from recrystallization plays a crucial role in defining the overall microstructure within the 
aluminium alloys. It arises as an outcome of the interplay among various factors and offers a 
comprehensive depiction of the microstructural attributes. Therefore, this study places its emphasis 
exclusively on the average grain size (AGS) as the central microstructural feature. 

Table 1 presents definitions and the corresponding ranges for each of these features. 
 

Table 1. Definitions and ranges of features 
The feature group Features Range 

Chemical composition 

Al (wt. %) 95.3 – 96.5 
Mg (wt. %) 2.7 – 3.3 
Mn (wt. %) 0.1 – 0.5 
Si (wt. %) 0.2 – 0.40 

Process parameter Final thickness (mm) 1.0 – 100.0  
Microstructure Average grain size (µm) 12.9 – 205.9 

Mechanical property 

Ultimate tensile strength 
(MPa) 

191 – 261  

Tensile yield strength 
(MPa) 

111 – 202  

Fracture elongation (%) 13.5 – 34  
 

Moreover, all these considered features can be found on any quality certificate that accompanies the 
products delivered to a customer, with the exception of the AGS, which is determined only for special 
applications or as a result of a specific customer's request. 

Consequently, by developing the model presented here to estimate the average grain size, only the 
data from the quality certificates that accompany the products of the AA5754 type plates or sheets will 
be needed. 
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2.2. Relationships between features  
A part of dataset was utilized to create Figure 1, where the vertical axis represents ultimate tensile 

strength (in MPa) or tension yield strength (in MPa), and the horizontal axis represents fracture 
elongation (in %). Figure 1 illustrates the correlation between the tempers (H22 vs H111) of the AA5754 
and their corresponding mechanical properties. As anticipated, an enhancement in mechanical 
properties is noticeable for products in the H22 temper compared to those in the H111 temper. 
Additionally, mechanical property values for products in the H22 temper are dispersed along a diagonal 
line from the upper left to the lower right, whereas for products in the H111 temper, these values are 
predominantly clustered at the lower end of this line. This clustering suggests a trend of group. 

 

  

a. The relationship between FE and UTS b. The relationship between FE and TYS 
Fig. 1. Relationships between mechanical properties and tempers of AA5754 

 
Much more eloquent is the representation of the data in the Figures 3 and 4 in the form of pair plots 

between the main elements of the chemical composition, final thickness, mechanical properties and 
average grain size for all data. Each individual subplot describes the relationship between two specific 
features. 

We found that a strong correlation can be established between the final thickness and the average 
grain size of AA5754 products, H111 and H22 temper. For the other features, the data are much more 
dispersed and machine learning algorithms are needed that can handle dimensional and non-linear 
problems to find relationships between these features and to estimate the average grain size. 

 

3. Modeling and results 
All the figures and machine learning algorithms used in this study come from the scikit-learn library 

based on Python language [11].  
The Pearson correlation coefficient was used to evaluate the importance of features influencing the 

average grain size. The results are shown in Figure 5. 
A good correlation depends on the use, but it is safe to say you have at least 0.6 (or –0.6) to call it a 

good correlation.  As can be seen from the coefficient’s values for each feature, the most significant factor 
affecting the average grain size is the final thickness of the product, followed by content of silicon and 
fracture elongation. In contrast, the effects of Mn, Mg, Al, UTS and TYS on the average grain size are 
negligible.  

The Pearson coefficient values can be explained by the fact that the most scattered data are the final 
thickness, and the least scattered are the mechanical properties and chemical composition, and in 
addition there are cases of products with different thicknesses but with the same chemical composition. 

The following figures, Figures 6 – 9, show several models for predicting the average grain size of plate 
or sheet products made from AA5754, in H111 or H22 tempers and with thicknesses ranging from 1 mm 
to 100 mm. 

Considering that in all four presented models the value of the Pearson coefficient is greater than or 
equal to 0.90, any of the models could be used to predict the average grain size of AA5754 products, 
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H111 or H22 temper. In addition, there is no point in including other features like chemical composition 
or mechanical properties in the prediction of the average grain size.  

 

 
Fig. 3. Pair plots between the main elements of the chemical composition, final thickness,  

the average grain size and temper of AA5754 
 

 
Fig. 4. Pair plots between final thickness, mechanical properties, average grain size  

and temper of AA5754 products 
 

If a quick calculation of the average grain size is desired, then it is recommended to use the linear 
regression (Fig. 6). On the other hand, if the thickness of the AA5754 plate or sheet is greater than 1 mm 
and less than 80 mm, and a higher precision is desired, then it is preferable to use the logarithmic 
regression (Fig. 8). Finally, if the thickness is greater than 80 mm, then it is recommended to use the 
power or the exponential regression (Fig. 9).  
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Fig. 5. The features correlating with average grain size of AA5754 products 

 

  

Fig. 6. Relationship between AGS and thickness 
of AA5754 by using linear regression 

Fig. 7. Relationship between AGS and thickness 
of AA5754 by using 2nd polynomial regression 

 

  

Fig. 8. Relationship between AGS and thickness 
of AA5754 by using logarithmic regression 

Fig. 9. Relationship between AGS and thickness 
of AA5754 by using power regression 

 
Typically, exponential regression is used to model processes that grow slowly, then quickly, while 

logarithmic regression is used to model processes that grow quickly, then slowly. 
Avoiding the utilization of polynomial regression (Fig. 7) is advisable, as second-order polynomial 

regression models tend to pose challenges in human interpretation. The increased complexity of these 
models diminishes the clarity around the factors that contribute to the predictions, ultimately 
influencing the accuracy of forecasts derived from such intricate models. 
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4. Conclusions 
The improvement of mechanical properties in aluminium alloys can be accomplished by employing 

the technique of grain refinement. Within the aluminium industry, grain size is used as the principal 
parameter to define grain refinement. As a result, there has been an increasing focus on developing 
accurate models to predict grain size. 

This study presents predictive models for estimating average grain size in AA5754 plates and sheets, 
H111 or H22 temper. Models are constructed via regression analysis using 153 sets of industrial data, 
considering alloy composition, mechanical properties, and product thickness (1 mm to 100 mm). 

Final product thickness, Si content, and FE are the most influential factors for average grain size, 
while effects of Mn, Mg, Al, UTS, and TYS are minor.  

All presented models with the input data of the final thickness and for which the Pearson coefficient is 
greater than or equal to 0.90 can be used to predict the average grain size of AA5754, H111 or H22 temper. 

For quick calculations, it is recommended to use linear regression; and for more precise calculations, 
for thickness 1-80 mm, logarithmic regression, and for thicknesses greater than 80 mm, exponential 
regression. Finally, avoid polynomial regression because of the complexity and interpretation 
challenges that can affect forecast accuracy. 
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